5 research outputs found

    Perceived responsibility for mechanical ventilation and weaning decisions in intensive care units in the Kingdom of Saudi Arabia

    Get PDF
    Background: Optimizing patient outcomes and reducing complications require constant monitoring and effective collaboration among critical care professionals. The aim of the present study was to describe the perceptions of physician directors, respiratory therapist managers and nurse managers regarding the key roles, responsibilities and clinical decision-making related to mechanical ventilation and weaning in adult Intensive Care Units (ICUs) in the Kingdom of Saudi Arabia (KSA). Methods: A multi-centre, cross-sectional self-administered survey was sent to physician directors, respiratory therapist managers and nurse managers of 39 adult ICUs at governmental tertiary referral hospitals in 13 administrative regions of the KSA. The participants were advised to discuss the survey with the frontline bedside staff to gather feedback from the physicians, respiratory therapists and nurses themselves on key mechanical ventilation and weaning decisions in their units. We performed T-test and non-parametric Mann-Whitney U tests to test the physicians, respiratory therapists, and nurses’ autonomy and influence scores, collaborative or single decisions among the professionals. Moreover, logistic regressions were performed to examine organizational variables associated with collaborative decision-making. Results: The response rate was 67% (14/21) from physician directors, 84% (22/26) from respiratory therapist managers and 37% (11/30) from nurse managers. Physician directors and respiratory therapist managers agreed to collaborate significantly in most of the key decisions with limited nurses’ involvement (P<0.01). We also found that physician directors were perceived to have greater autonomy and influence in ventilation and waning decision-making with a mean of 8.29 (SD±1.49), and 8.50 (SD±1.40), respectively. Conclusion: The key decision-making was implemented mainly by physicians and respiratory therapists in collaboration. Nurses had limited involvement. Physician directors perceived higher autonomy and influence in ventilatory and weaning decision-making than respiratory therapist managers and nurse managers. A critical care unit’s capacity to deliver effective and safe patient care may be improved by increasing nurses’ participation and acknowledging the role of respiratory therapists in clinical decision-making regarding mechanical ventilation and weaning

    Hydrogel assistant synthesis of new Ti-MOF cross-linked oxidized pectin and chitosan with anti-breast cancer properties

    Get PDF
    Breast cancer is one of the most common diseases of the modern age. Although many methods for its treatment have been reported so far, the report and synthesis of new compounds based on new technologies, especially nanotechnology, is important. One of the laboratory methods for evaluating the anticancer properties of compounds is the in vitro MTT method (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide). In this study, the in vitro anti-breast cancer activity of the newly synthesized (Titanium Metal-Organic Framework) Ti-MOF cross-linked oxidized pectin and chitosan hydrogel, which uses biopolymers in its synthesis and structure, was investigated. The anticancer activity results showed that the synthetic nanopolymer had cell proliferation and viability of 27% more than the control and (the half maximal inhibitory concentration) IC50 of 111 μg/mL against breast cancer cells. Before the anticancer evaluation, the structure of the synthesized Ti-MOF cross-linked oxidized pectin, and chitosan hydrogel was confirmed by (X-Ray Diffraction) XRD pattern (Fourier Transform Infrared) FT-IR spectrum (Energy-dispersive X-ray) EDAX spectroscopy, N2 adsorption/desorption isotherm and (Scanning Electron Microscope) Scanning Electron Microscope images. The results of identification and characterization showed that the synthetic nanopolymer was in the range of nanoparticles. The peaks of the expected functional groups and reactant elements were observed in the FT-IR spectrum and energy-dispersive X-ray spectroscopy of the final product. High physicochemical capabilities such as the uniform morphology, crystallization of particles, and high specific surface area from synthesized Ti-MOF cross-linked oxidized pectin, and chitosan hydrogel were observed. The unique properties of the synthesized Ti-MOF cross-linked oxidized pectin and chitosan hydrogel can be attributed to the appropriate method of its synthesis that was carried out in this study

    Properties of Nano-Amendments and Their Effect on Some Soil Properties and Root-Knot Nematode and Yield Attributes of Tomato Plant

    No full text
    The use of green nano-amendments is a promising approach for improving soil health and providing sustainable options to reduce root-knot nematodes (RKN) and thus increase yields. Therefore, the purpose of this research was to identify the characteristics of nano-amendments such as nanobiochar (nB), green nanobiochar (GnB), and magnetic nanobiochar (MnB) and their effect on the root-knot nematodes and tomato yield at levels of 3 and 6 mg kg&minus;1 in sandy loam soil. The results showed that the GnB and MnB contain many functional groups (such as O-H, C=C, S-H, H-C=O, C-O, and H&ndash;O&ndash;H) and minerals (such as magnetite, ferrous sulfate monohydrate, and quartz), and they also had an elevated specific surface area. The application of the investigated soil nano-amendments significantly increased soil organic matter (OM) and microbial biomass carbon (MBC) and decreased the root-knot nematodes, playing a major role in increasing tomato growth. The highest significant values of OM and MBC were found in the soil amended by GnB at 6 mg kg&minus;1, with increases of 84.7% and 71.5% as compared to the control, respectively. GnB6 significantly decreased the number of root galls, the egg mass, and number of nematodes per 250 cm3 soil by 77.67, 88.65, and 74.46%, respectively, compared to the control. Green nanobiochar was more efficient in accelerating the growth and yield components of the tomato plant. The addition of GnB is an effective strategy and an environmentally friendly technology to control plant parasitic nematodes and increase tomato yield. Therefore, the results recommend adding GnB at a rate of 6 mg kg&minus;1 in sandy loam soil

    Properties of Nano-Amendments and Their Effect on Some Soil Properties and Root-Knot Nematode and Yield Attributes of Tomato Plant

    No full text
    The use of green nano-amendments is a promising approach for improving soil health and providing sustainable options to reduce root-knot nematodes (RKN) and thus increase yields. Therefore, the purpose of this research was to identify the characteristics of nano-amendments such as nanobiochar (nB), green nanobiochar (GnB), and magnetic nanobiochar (MnB) and their effect on the root-knot nematodes and tomato yield at levels of 3 and 6 mg kg−1 in sandy loam soil. The results showed that the GnB and MnB contain many functional groups (such as O-H, C=C, S-H, H-C=O, C-O, and H–O–H) and minerals (such as magnetite, ferrous sulfate monohydrate, and quartz), and they also had an elevated specific surface area. The application of the investigated soil nano-amendments significantly increased soil organic matter (OM) and microbial biomass carbon (MBC) and decreased the root-knot nematodes, playing a major role in increasing tomato growth. The highest significant values of OM and MBC were found in the soil amended by GnB at 6 mg kg−1, with increases of 84.7% and 71.5% as compared to the control, respectively. GnB6 significantly decreased the number of root galls, the egg mass, and number of nematodes per 250 cm3 soil by 77.67, 88.65, and 74.46%, respectively, compared to the control. Green nanobiochar was more efficient in accelerating the growth and yield components of the tomato plant. The addition of GnB is an effective strategy and an environmentally friendly technology to control plant parasitic nematodes and increase tomato yield. Therefore, the results recommend adding GnB at a rate of 6 mg kg−1 in sandy loam soil

    Updated Treatment of Fibromyalgia Syndrome: A Review

    No full text
    Fibromyalgia is a debilitating condition that is frequently misdiagnosed. It affects 2% of the population, with middle-aged women having the highest frequency. Fibromyalgia affects more women than men, and It becomes worse as you get older. Because medical treatment for fibromyalgia is typically only partial, health professionals must provide patients with ongoing assistance in order for them to become effective, active self-managers. There is no one-size-fits-all drug for fibromyalgia, but you do have a lot of options for treating your symptoms. However, Antidepressants in general such as "duloxetine" and Gabapentinoids drugs such as "pregabline" are the most used drugs. There is some evidence that NSAIDs may have a synergistic effect when combined with centrally active agents such as tricyclic antidepressants and anticonvulsants. Among non-pharmacological therapy, exercise and psychoeducational techniques have the most evidence of efficacy, but they must be personalized to the individual. In this review we will be looking at diagnosis and treatment of fibromyalgia
    corecore