39 research outputs found

    PIPE-chipSAD: A Pipeline for the Analysis of High Density Arrays of Bacterial Transcriptomes

    Get PDF
    PIPE-chipSAD is a pipeline for bacterial transcriptome studies based on high-density microarray experiments. The main algorithm chipSAD, integrates the analysis of the hybridization signal with the genomic position of probes and identifies portions of the genome transcribing for mRNAs. The pipeline includes a procedure, align-chipSAD, to build a multiple alignment of transcripts originating in the same locus in multiple experiments and provides a method to compare mRNA expression across different conditions. Finally, the pipeline includes anno-chipSAD a method to annotate the detected transcripts in comparison to the genome annotation. Overall, our pipeline allows transcriptional profile analysis of both coding and non-coding portions of the chromosome in a single framework. Importantly, due to its versatile characteristics, it will be of wide applicability to analyse, not only microarray signals, but also data from other high throughput technologies such as RNA-sequencing. The current PIPE-chipSAD implementation is written in Python programming language and is freely available at https://github.com/silviamicroarray/chipSAD

    MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state

    Get PDF
    Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermore, we demonstrate that the MYC-driven epigenetic reprogramming favors the formation and maintenance of tumor-initiating cells endowed with metastatic capacity. This study supports the notion that MYC-driven tumor initiation relies on cell reprogramming, which is mediated by the activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers

    Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51

    Get PDF
    : Breast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independent negative factor correlated with the progression of the disease. Genetic inhibition of Sam68 caused a defect in PARP-induced PAR chain synthesis upon DNA-damaging insults, resulting in cell death of TNBC cells. In contrast, BC stem-like cells were able to survive due to an upregulation of Rad51. Importantly, the inhibition of Rad51 showed synthetic lethal effect with the silencing of Sam68, hampering the cell viability of patient-derived BCSphCs and stabilizing the growth of tumor xenografts, including those TNBC carrying BRCA mutation. Moreover, the analysis of Myc, Sam68 and Rad51 expression demarcated a signature of a poor outcome in a large cohort of BC patients. Thus, our findings suggest the importance of targeting Sam68-PARP1 axis and Rad51 as potential therapeutic candidates to counteract the expansion of BC cells with an aggressive phenotype

    Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity

    Get PDF
    Abstract: Neuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals

    The role of the NadR regulator during infection and its implication for the coverage of a new Meningococcus B vaccine

    Get PDF
    Background: Neisseria meningitides represents a major cause of meningitis and sepsis. The meningococcal regulator NadR was previously shown to repress the expression of the Neisserial Adhesin A (NadA) and play a major role in its phase-variation. NadA is a surface exposed protein involved in epithelial cell adhesion and colonization and a major component of 4CMenB, a novel vaccine to prevent meningococcus serogroup B infection. The NadR mediated repression of NadA is attenuated by 4-HPA, a natural molecule released in human saliva. Results: In this thesis we investigated the global role of NadR during meningogoccal infection, identifying through microarray analysis the NadR regulon. Two distinct types of NadR targets were identified, differing in their promoter architectures and 4HPA responsive activities: type I are induced, while type II are co-repressed in response to the same 4HPA signal. We then investigate the mechanism of regulation of NadR by 4-HPA, generating NadR mutants and identifying classes or residues involved in either NadR DNA binding or 4HPA responsive activities. Finally, we studied the impact of NadR mediated repression of NadA on the vaccine coverage of 4CMenB. A selected MenB strains is not killed by sera from immunized infants when the strain is grown in vitro, however, in an in vivo passive protection model, the same sera protected infant rats from bacteremia. Finally, using bioluminescent reporters, nadA expression in the infant rat model was induced in vivo at 3 h post-infection. Conclusions: Our results suggest that NadR coordinates a broad transcriptional response to signals present in the human host, enabling the meningococcus to adapt to the relevant host niche. During infectious disease the effect of the same signal on NadR changes between different targets. In particular NadA expression is induced in vivo, leading to efficient killing of meningococcus by anti-NadA antibodies elicited by the 4CMenB vaccine

    Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells

    No full text
    Stem cells balance their self-renewal and differentiation potential by integrating environmental signals with the transcriptional regulatory network. The maintenance of cell identity and/or cell lineage commitment relies on the interplay of multiple factors including signaling pathways, transcription factors, and the epigenetic machinery. These regulatory modules are strongly interconnected and they influence the pattern of gene expression of stem cells, thus guiding their cellular fate. Embryonic stem cells (ESCs) represent an invaluable tool to study this interplay, being able to indefinitely self-renew and to differentiate towards all three embryonic germ layers in response to developmental cues. In this review, we highlight those mechanisms of signaling to chromatin, which regulate chromatin modifying enzymes, histone modifications, and nucleosome occupancy. In addition, we report the molecular mechanisms through which signaling pathways affect both the epigenetic and the transcriptional state of ESCs, thereby influencing their cell identity. We propose that the dynamic nature of oscillating signaling and the different regulatory network topologies through which those signals are encoded determine specific gene expression programs, leading to the fluctuation of ESCs among multiple pluripotent states or to the establishment of the necessary conditions to exit pluripotency

    Tumorigenic Cell Reprogramming and Cancer Plasticity: Interplay between Signaling, Microenvironment, and Epigenetics

    No full text
    Accumulating evidences indicate that many tumors rely on subpopulations of cancer stem cells (CSCs) with the ability to propagate malignant clones indefinitely and to produce an overt cancer. Of importance, CSCs seem to be more resistant to the conventional cytotoxic treatments, driving tumor growth and contributing to relapse. CSCs can originate from normal committed cells which undergo tumor-reprogramming processes and reacquire a stem cell-like phenotype. Increasing evidences also show how tumor homeostasis and progression strongly rely on the capacity of nontumorigenic cancer cells to dedifferentiate to CSCs. Both tumor microenvironment and epigenetic reprogramming drive such dynamic mechanisms, favoring cancer cell plasticity and tumor heterogeneity. Here, we report new developments which led to an advancement in the CSC field, elucidating the concepts of cancer cell of origin and CSC plasticity in solid tumor initiation and maintenance. We further discuss the main signaling pathways which, under the influence of extrinsic environmental factors, play a critical role in the formation and maintenance of CSCs. Moreover, we propose a review of the main epigenetic mechanisms whose deregulation can favor the onset of CSC features both in tumor initiation and tumor maintenance. Finally, we provide an update of the main strategies that could be applied to target CSCs and cancer cell plasticity

    SETD5 Regulates Chromatin Methylation State and Preserves Global Transcriptional Fidelity during Brain Development and Neuronal Wiring

    No full text
    Mutations in one SETD5 allele are genetic causes of intellectual disability and autistic spectrum disorders. However, the mechanisms by which SETD5 regulates brain development and function remain largely elusive. Herein, we found that Setd5 haploinsufficiency impairs the proliferative dynamics of neural progenitors and synaptic wiring of neurons, ultimately resulting in behavioral deficits in mice. Mechanistically, Setd5 inactivation in neural stem cells, zebrafish, and mice equally affects genome-wide levels of H3K36me3 on active gene bodies. Notably, we demonstrated that SETD5 directly deposits H3K36me3, which is essential to allow on-time RNA elongation dynamics. Hence, Setd5 gene loss leads to abnormal transcription, with impaired RNA maturation causing detrimental effects on gene integrity and splicing. These findings identify SETD5 as a fundamental epigenetic enzyme controlling the transcriptional landscape in neural progenitors and their derivatives and illuminate the molecular events that connect epigenetic defects with neuronal dysfunctions at the basis of related human diseases
    corecore