11 research outputs found
Automated Synthesis of Distributed Self-Stabilizing Protocols
In this paper, we introduce an SMT-based method that automatically
synthesizes a distributed self-stabilizing protocol from a given high-level
specification and network topology. Unlike existing approaches, where synthesis
algorithms require the explicit description of the set of legitimate states,
our technique only needs the temporal behavior of the protocol. We extend our
approach to synthesize ideal-stabilizing protocols, where every state is
legitimate. We also extend our technique to synthesize monotonic-stabilizing
protocols, where during recovery, each process can execute an most once one
action. Our proposed methods are fully implemented and we report successful
synthesis of well-known protocols such as Dijkstra's token ring, a
self-stabilizing version of Raymond's mutual exclusion algorithm,
ideal-stabilizing leader election and local mutual exclusion, as well as
monotonic-stabilizing maximal independent set and distributed Grundy coloring
Parameterized synthesis of self-stabilizing protocols in symmetric networks
Self-stabilization in distributed systems is a technique to guarantee convergence to a set of legitimate states without external intervention when a transient fault or bad initialization occurs. Recently, there has been a surge of efforts in designing techniques for automated synthesis of self-stabilizing algorithms that are correct by construction. Most of these techniques, however, are not parameterized, meaning that they can only synthesize a solution for a fixed and predetermined number of processes. In this paper, we report a breakthrough in parameterized synthesis of self-stabilizing algorithms in symmetric networks, including ring, line, mesh, and torus. First, we develop cutoffs that guarantee (1) closure in legitimate states, and (2) deadlock-freedom outside the legitimate states. We also develop a sufficient condition for convergence in self-stabilizing systems. Since some of our cutoffs grow with the size of the local state space of processes, scalability of the synthesis procedure is still a problem. We address this problem by introducing a novel SMT-based technique for counterexample-guided synthesis of self-stabilizing algorithms in symmetric networks. We have fully implemented our technique and successfully synthesized solutions to maximal matching, three coloring, and maximal independent set problems for ring and line topologies
Parameterized Synthesis of Self-Stabilizing Protocols in Symmetric Rings
Self-stabilization in distributed systems is a technique to guarantee convergence to a set of legitimate states without external intervention when a transient fault or bad initialization occurs. Recently, there has been a surge of efforts in designing techniques for automated synthesis of self-stabilizing algorithms that are correct by construction. Most of these techniques, however, are not parameterized, meaning that they can only synthesize a solution for a fixed and predetermined number of processes. In this paper, we report a breakthrough in parameterized synthesis of self-stabilizing algorithms in symmetric rings. First, we develop tight cutoffs that guarantee (1) closure in legitimate states, and (2) deadlock-freedom outside the legitimates states. We also develop a sufficient condition for convergence in silent self-stabilizing systems. Since some of our cutoffs grow with the size of local state space of processes, we also present an automated technique that significantly increases the scalability of synthesis in symmetric networks. Our technique is based on SMT-solving and incorporates a loop of synthesis and verification guided by counterexamples. We have fully implemented our technique and successfully synthesized solutions to maximal matching, three coloring, and maximal independent set problems
Automated Synthesis of Distributed Self-Stabilizing Protocols
In this paper, we introduce an SMT-based method that automatically
synthesizes a distributed self-stabilizing protocol from a given high-level
specification and network topology. Unlike existing approaches, where synthesis
algorithms require the explicit description of the set of legitimate states,
our technique only needs the temporal behavior of the protocol. We extend our
approach to synthesize ideal-stabilizing protocols, where every state is
legitimate. We also extend our technique to synthesize monotonic-stabilizing
protocols, where during recovery, each process can execute an most once one
action. Our proposed methods are fully implemented and we report successful
synthesis of well-known protocols such as Dijkstra's token ring, a
self-stabilizing version of Raymond's mutual exclusion algorithm,
ideal-stabilizing leader election and local mutual exclusion, as well as
monotonic-stabilizing maximal independent set and distributed Grundy coloring