11 research outputs found

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring

    Parameterized synthesis of self-stabilizing protocols in symmetric networks

    Get PDF
    Self-stabilization in distributed systems is a technique to guarantee convergence to a set of legitimate states without external intervention when a transient fault or bad initialization occurs. Recently, there has been a surge of efforts in designing techniques for automated synthesis of self-stabilizing algorithms that are correct by construction. Most of these techniques, however, are not parameterized, meaning that they can only synthesize a solution for a fixed and predetermined number of processes. In this paper, we report a breakthrough in parameterized synthesis of self-stabilizing algorithms in symmetric networks, including ring, line, mesh, and torus. First, we develop cutoffs that guarantee (1) closure in legitimate states, and (2) deadlock-freedom outside the legitimate states. We also develop a sufficient condition for convergence in self-stabilizing systems. Since some of our cutoffs grow with the size of the local state space of processes, scalability of the synthesis procedure is still a problem. We address this problem by introducing a novel SMT-based technique for counterexample-guided synthesis of self-stabilizing algorithms in symmetric networks. We have fully implemented our technique and successfully synthesized solutions to maximal matching, three coloring, and maximal independent set problems for ring and line topologies

    Parameterized Synthesis of Self-Stabilizing Protocols in Symmetric Rings

    Get PDF
    Self-stabilization in distributed systems is a technique to guarantee convergence to a set of legitimate states without external intervention when a transient fault or bad initialization occurs. Recently, there has been a surge of efforts in designing techniques for automated synthesis of self-stabilizing algorithms that are correct by construction. Most of these techniques, however, are not parameterized, meaning that they can only synthesize a solution for a fixed and predetermined number of processes. In this paper, we report a breakthrough in parameterized synthesis of self-stabilizing algorithms in symmetric rings. First, we develop tight cutoffs that guarantee (1) closure in legitimate states, and (2) deadlock-freedom outside the legitimates states. We also develop a sufficient condition for convergence in silent self-stabilizing systems. Since some of our cutoffs grow with the size of local state space of processes, we also present an automated technique that significantly increases the scalability of synthesis in symmetric networks. Our technique is based on SMT-solving and incorporates a loop of synthesis and verification guided by counterexamples. We have fully implemented our technique and successfully synthesized solutions to maximal matching, three coloring, and maximal independent set problems

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    No full text
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring
    corecore