41 research outputs found

    Regeneration of Intrabony Defects with Nano Hydroxyapatite Graft, Derived from Eggshell along with Periosteum as Barrier Membrane under Magnification—An Interventional Study

    Get PDF
    Intrabony defects can be treated by various approaches. Use of GTR along with bone grafts is said to enhance the outcome. The periosteum has been claimed to increase the regeneration. The egg-shell-derived nano hydroxyapatite (EnHA) has shown a scope as alloplastic graft. Thus, the following study was undertaken to combine the periosteal pedicle along with EnHA for the treatment of intrabony defects under magnification to achieve optimal bone regeneration. A total of 21 patients, having intrabony defects with ≥6 mm probing depth (PD) and two or three wall defects as detected on CBCT, satisfying inclusion criteria were enrolled. The sites were randomly allocated as Group A, B and C (n = 7). The following parameters, defect density and defect fill in CBCT (at baseline and 6 months), PPD, RAL, Plaque index (PI), Gingival index (GI) and Gingival Bleeding Index (GBI) were recorded at baseline, 1, 3 and 6 months. p < 0.05 is considered as statistically significant. Bone density and bone fill values were found to be much higher in pedicle with EnHA and EnHA alone group and the values showed statistically significant results. The current clinical research showed that periosteal pedicle along with EnHA and EnHA as stand-alone therapy gave superior results compared to OFD alone, which is an innovative and feasible treatment option

    Synchronized turbo apoptosis induced by cold-shock

    Get PDF
    In our research on the role of apoptosis in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE), we aim to evaluate the effects of early and late apoptotic cells and blebs on antigen presenting cells. This requires the in vitro generation of sufficiently large and homogeneous populations of early and late apoptotic cells. Here, we present a quick method encountered by serendipity that results in highly reproducible synchronized homogeneous apoptotic cell populations. In brief, granulocytic 32Dcl3 cells are incubated on ice for 2 h and subsequently rewarmed at 37°C. After 30–90 min at 37°C more than 80–90% of the cells become early apoptotic (Annexin V positive/propidium iodide negative). After 24 h of rewarming at 37°C 98% of the cells were late apoptotic (secondary necrotic; Annexin V positive/propidium iodide positive). Cells already formed apoptotic blebs at their cell surface after approximately 20 min at 37°C. Inter-nucleosomal chromatin cleavage and caspase activation were other characteristics of this cold-shock-induced process of apoptosis. Consequently, apoptosis could be inhibited by a caspase inhibitor. Finally, SLE-derived anti-chromatin autoantibodies showed a high affinity for apoptotic blebs generated by cold-shock. Overall, cold-shock induced apoptosis is achieved without the addition of toxic compounds or antibodies, and quickly leads to synchronized homogeneous apoptotic cell populations, which can be applied for various research questions addressing apoptosis

    Evaluation of the Influenza A Replicon for Transient Expression of Recombinant Proteins in Mammalian Cells

    Get PDF
    Recombinant protein expression in mammalian cells has become a very important technique over the last twenty years. It is mainly used for production of complex proteins for biopharmaceutical applications. Transient recombinant protein expression is a possible strategy to produce high quality material for preclinical trials within days. Viral replicon based expression systems have been established over the years and are ideal for transient protein expression. In this study we describe the evaluation of an influenza A replicon for the expression of recombinant proteins. We investigated transfection and expression levels in HEK-293 cells with EGFP and firefly luciferase as reporter proteins. Furthermore, we studied the influence of different influenza non-coding regions and temperature optima for protein expression as well. Additionally, we exploited the viral replication machinery for the expression of an antiviral protein, the human monoclonal anti-HIV-gp41 antibody 3D6. Finally we could demonstrate that the expression of a single secreted protein, an antibody light chain, by the influenza replicon, resulted in fivefold higher expression levels compared to the usually used CMV promoter based expression. We emphasize that the influenza A replicon system is feasible for high level expression of complex proteins in mammalian cells

    Informed Consent in Saudi Arabia

    No full text
    corecore