14 research outputs found

    Involvement of cyclic guanosine monophosphate-dependent protein kinase I in renal antifibrotic effects of serelaxin

    Get PDF
    Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/ cGMP to inhibit transforming growth factor 1)) (TGFI)) signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureteral obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagenl A1, total collagen, and fibronectin. The profibrotic connective tissue growth factor as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and-9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1-dependent TGF-13 signaling and increased PDE5a phosphorylation

    Involvement of cyclic guanosine monophosphate-dependent protein kinase I in renal antifibrotic effects of serelaxin

    No full text
    Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/ cGMP to inhibit TGF-β signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureter obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagen1A1, total collagen and fibronectin. The profibrotic CTGF as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and -9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1 -dependent TGF-β signaling and increased PDE5a phosphorylation

    Differences in the renal antifibrotic cGMP/cGKI-dependent signaling of serelaxin, zaprinast, and their combination

    No full text
    Renal fibrosis is an important factor for end-stage renal failure. However, only few therapeutic options for its treatment are established. Zaprinast, a phosphodiesterase 5 inhibitor, and serelaxin, the recombinant form of the naturally occurring hormone relaxin, are differently acting modulators of cyclic guanosine monophosphate (cGMP) signaling. Both agents enhance cGMP availability in kidney tissue. These substances alone or in combination might interfere with the development of kidney fibrosis. Therefore, we compared the effects of combination therapy with the effects of monotherapy on renal fibrosis. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) for 7 days in wild-type (WT) and cGKI knockout (KO) mice. Renal antifibrotic effects were assessed after 7 days. In WT, zaprinast and the combination of zaprinast and serelaxin significantly reduced renal interstitial fibrosis assessed by alpha-SMA, fibronectin, collagen1A1, and gelatinases (MMP2 and MMP9). Intriguingly in cGKI-KO, mRNA and protein expression of fibronectin and collagen1A1 were reduced by zaprinast, in contrast to serelaxin. Gelatinases are not regulated by zaprinast. Although both substances showed similar antifibrotic properties in WT, they distinguished in their effect mechanisms. In contrast to serelaxin which acts both on Smad2 and Erk1, zaprinast did not significantly diminish Erk1/2 phosphorylation. Interestingly, the combination of serelaxin/zaprinast achieved no additive antifibrotic effects compared to the monotherapy. Due to antifibrotic effects of zaprinast in cGKI-KO, we hypothesize that additional cGKI-independent mechanisms are supposed for antifibrotic signaling of zaprinast

    Comparative bioavailability of the microemulsion formulation of cyclosporine (Neoral) with a generic dispersion formulation (Cicloral) in young healthy male volunteers

    No full text
    The aim of this study was to compare the bioavailability of cyclosporine (CyA) from the generic dispersion formulation Cicloral (CIC) with the microemulsion formulation Neoral (NEO) and the original Sandimmune (SIM) capsules after single doses of 100, 300, or 600 mg of drug, respectively. The study was performed according to an open 3-period cross-over design with 12 young healthy male volunteers for each dosage. The concentrations of CyA and its main metabolites were determined by high performance liquid chromatography in whole blood and urine up to 48 hours postdosing. Peak concentrations and area under the time-concentration curve were greater for the NEO and CIC formulations compared with SIM, and the mean bioavailability of CIC was significantly (P<0.05) lower compared with NEO. The bioavailability of SIM compared with NEO was 54% to 71%, in agreement with previous results. Bioequivalence was not demonstrated between CIC (test) and NEO (reference) as the 90% confidence intervals were outside the 80% to 125% guidelines based on log-transformed AUCs, and were 75.2% to 87.7% at 100 mg, 79.2% to 91.8% at 300 mg, and 76.6% to 94.5% at 600 mg doses. The respective values for Cmax were 78.9% to 94.6%, 80.7% to 95.0%, and 71.4% to 84.1%. A good correlation was demonstrated between the urinary recovery of CyA and the AUC4. Therefore, the urinary recovery of CyA may be helpful as a surrogate parameter for the systemic exposure of patients to CyA. Whereas the relative amount of hydroxylated metabolites (AM1, AM9, AM1c) was similar for all formulations and doses, the urinary recovery of the N-demethylated metabolite AM4N decreased with increasing dose indicating saturable metabolism. No relationship could be demonstrated between CYP3A activity using dextromethorphan as a probe for the metabolic clearance of CyA

    Plasma MMP2/TIMP4 Ratio at Follow-up Assessment Predicts Disease Progression of Idiopathic Pulmonary Arterial Hypertension

    No full text
    Purpose Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) are of particular interest in the remodeling processes of pulmonary hypertension. The aim of this study was to investigate MMP/TIMP ratios of selected biomarkers (MMP2, MMP9, TIMP1, TIMP4) at follow-up examination (V2) and their prognostic value in patients with idiopathic pulmonary arterial hypertension (iPAH). Methods Blood samples were taken from iPAH patients during right heart catheterization at diagnosis (V1, from 2003 to 2012) and first follow-up examination (V2). MMP2, MMP9, TIMP1, and TIMP4 plasma levels at V2 were determined by ELISA. Coincident with sample collection hemodynamic, laboratory, and clinical parameters were acquired. Additionally, death and clinical worsening (CW) events were listed until July 2015. Results MMP2/TIMP1 and MMP9/TIMP1 did not correlate with hemodynamic and clinical parameters. MMP2/TIMP4 showed a good correlation with mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance, estimated glomerular filtration rate (eGFR), and tricuspid annular plain systolic excursion (TAPSE). MMP9/TIMP4 shows good correlation with mPAP and eGFR. MMP2/TIMP4 showed significant results in the receiver operating characteristics analysis predicting death (AUC = 0.922; p = 0.005) and CW event (AUC = 0.818; p = 0.026). Patients above the cut-off values had a significantly higher probability to die or experience CW, respectively, estimated by log-rank test (p = 0.010 for death; p = 0.032 for CW). Conclusions MMP2/TIMP4 ratio was detected as a marker of disease severity and right ventricular function as well as a predictor for survival and time to clinical worsening and therefore might help for guidance of disease progression in iPAH patients at V2

    Impact of angiogenic activation and inhibition on miRNA profiles of human retinal endothelial cells

    No full text
    Background: Human retinal microvascular endothelial cells (HRMVECs) are involved in the pathogenesis of retinopathy of prematurity. In this study, the microRNA (miRNA) expression profiles of HRMVECs were investigated under resting conditions, angiogenic stimulation (VEGF treatment) and anti-VEGF treatment. Materials and methods: The miRNA profiles of HRMVECs under resting and angiogenic conditions (VEGF treatment), as well as after addition of aflibercept, bevacizumab or ranibizumab were evaluated by analyzing the transcriptome of small non-coding RNAs. Differentially expressed miRNAs were validated using qPCR and classified using Gene Ontology enrichment analysis. Results: Ten miRNAs were found to be significantly changed more than 2-fold. Seven of these miRNAs were changed between resting conditions and angiogenic stimulation. Four of these miRNAs (miR-139-5p/-3p and miR-335-5p/-3p) were validated by qPCR in independent experiments and were found to be associated with angiogenesis and cell migration in Gene Ontology analysis. In addition, analysis of the most abundant miRNAs in the HRMVEC miRNome (representing at least 1% of the miRNome) was conducted and identified miR-21-5p, miR-29a.3p, miR.100-5p and miR-126-5p/-3p to be differently expressed by at least 15% between resting conditions and angiogenic conditions. These miRNAs were found to be associated with apoptotic signaling, regulation of kinase activity, intracellular signal transduction, cell surface receptor signaling and positive regulation of cell differentiation in Gene Ontology analysis. No differentially regulated miRNAs between angiogenic stimulation and angiogenic stimulation plus anti-VEGF treatment were identified. Conclusion: In this study we characterized the miRNA profile of HRMVECs under resting, angiogenic and antiangiogenic conditions and identified several miRNAs of potential pathophysiologic importance for angioproli-ferative retinal diseases. Our results have implications for possible miRNA-targeted angiomodulatory approaches in diseases like diabetic retinopathy or retinopathy of prematurity

    Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders

    No full text
    Background Vascular endothelial growth factor-A (VEGF-A) is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements. Methods Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center) twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT/CTAD), cannula (butterfly vs. neonatal), type of centrifuge (swing-out vs. fixed-angle), time before and after centrifugation, filling level (completely filled vs. half-filled tubes) and analyzing method (ELISA vs. multiplex bead array). Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model. Results The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes. Conclusion VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples

    Secreted frizzled-related protein 4 predicts progression of autosomal dominant polycystic kidney disease

    No full text
    Autosomal dominant polycystic kidney disease (ADPKD) is a common autosomal dominant condition associated with renal cysts and development of renal failure. With the availability of potential therapies, one major obstacle remains the lack of readily available parameters that identify patients at risk for disease progression and/or determine the efficacy of therapeutic interventions within short observation periods. Increased total kidney volume (TKV) correlates with disease progression, but it remains unknown how accurate this parameter can predict disease progression at early stages. To identify additional parameters that help to stratify ADPKD patients, we measured secreted frizzled-related protein 4 (sFRP4) serum concentrations at baseline and over the course of 18 months in 429 ADPKD patients. Serum creatinine and sFRP4 as well as TKV increased over time, and were significantly different from baseline values within 1 year. Elevated sFRP4 levels at baseline predicted a more rapid decline of renal function at 2, 3 and 5 years suggesting that sFRP4 serum levels may provide additional information to identify ADPKD patients at risk for rapid disease progression
    corecore