6 research outputs found
NDRG2 Expression Correlates with Neurofibrillary Tangles and Microglial Pathology in the Ageing Brain.
Astrocytes play a major role in the pathogenesis of a range of neurodegenerative diseases, including Alzheimer's disease (AD), undergoing dramatic morphological and molecular changes that can cause potentially both beneficial and detrimental effects. They comprise a heterogeneous population, requiring a panel of specific phenotype markers to identify astrocyte subtypes, changes in function and their relation to pathology. This study aimed to characterise expression of the astrocyte marker N-myc downstream regulated gene 2 (NDRG2) in the ageing brain, investigate the relationship between NDRG2 and a panel of astrocyte markers, and relate NDRG2 expression to pathology. NDRG2 specifically immunolabelled the cell body and radiating processes of astrocytes in the temporal cortex of the Cognitive Function and Ageing Study (CFAS) neuropathology cohort. Expression of NDRG2 did not correlate with other astrocyte markers, including glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). NDRG2 showed a relationship to AT8+ neurofibrillary tangles (p = 0.001) and CD68+ microglia (p = 0.047), but not β-amyloid plaques or astrocyte nuclear γH2AX immunoreactivity, a marker of DNA damage response. These findings provide new insight into the astrocyte response to pathology in the ageing brain, and suggest NDRG2 may be a potential target to modulate this response
Transcriptomic Analysis of Age-Associated Periventricular Lesions Reveals Dysregulation of the Immune Response.
White matter lesions (WML) are a common feature of the ageing brain associated with cognitive impairment. The gene expression profiles of periventricular lesions (PVL, n = 7) and radiologically-normal-appearing (control) periventricular white matter cases (n = 11) obtained from the Cognitive Function and Ageing Study (CFAS) neuropathology cohort were interrogated using microarray analysis and NanoString to identify novel mechanisms potentially underlying their formation. Histological characterisation of control white matter cases identified a subgroup (n = 4) which contained high levels of MHC-II immunoreactive microglia, and were classified as "pre-lesional." Microarray analysis identified 2256 significantly differentially-expressed genes (p ≤ 0.05, FC ≥ 1.2) in PVL compared to non-lesional control white matter (1378 upregulated and 878 downregulated); 2649 significantly differentially-expressed genes in "pre-lesional" cases compared to PVL (1390 upregulated and 1259 downregulated); and 2398 significantly differentially-expressed genes in "pre-lesional" versus non-lesional control cases (1527 upregulated and 871 downregulated). Whilst histological evaluation of a single marker (MHC-II) implicates immune-activated microglia in lesion pathology, transcriptomic analysis indicates significant downregulation of a number of activated microglial markers and suggests established PVL are part of a continuous spectrum of white matter injury. The gene expression profile of "pre-lesional" periventricular white matter suggests upregulation of several signalling pathways may be a neuroprotective response to prevent the pathogenesis of PVL
Recommended from our members
NDRG2 Expression Correlates with Neurofibrillary Tangles and Microglial Pathology in the Ageing Brain
Astrocytes play a major role in the pathogenesis of a range of neurodegenerative diseases, including Alzheimer’s disease (AD), undergoing dramatic morphological and molecular changes that can cause potentially both beneficial and detrimental effects. They comprise a heterogeneous population, requiring a panel of specific phenotype markers to identify astrocyte subtypes, changes in function and their relation to pathology. This study aimed to characterise expression of the astrocyte marker N-myc downstream regulated gene 2 (NDRG2) in the ageing brain, investigate the relationship between NDRG2 and a panel of astrocyte markers, and relate NDRG2 expression to pathology. NDRG2 specifically immunolabelled the cell body and radiating processes of astrocytes in the temporal cortex of the Cognitive Function and Ageing Study (CFAS) neuropathology cohort. Expression of NDRG2 did not correlate with other astrocyte markers, including glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). NDRG2 showed a relationship to AT8+ neurofibrillary tangles (p = 0.001) and CD68+ microglia (p = 0.047), but not β-amyloid plaques or astrocyte nuclear γH2AX immunoreactivity, a marker of DNA damage response. These findings provide new insight into the astrocyte response to pathology in the ageing brain, and suggest NDRG2 may be a potential target to modulate this response
Recommended from our members
NDRG2 Expression Correlates with Neurofibrillary Tangles and Microglial Pathology in the Ageing Brain.
Astrocytes play a major role in the pathogenesis of a range of neurodegenerative diseases, including Alzheimer's disease (AD), undergoing dramatic morphological and molecular changes that can cause potentially both beneficial and detrimental effects. They comprise a heterogeneous population, requiring a panel of specific phenotype markers to identify astrocyte subtypes, changes in function and their relation to pathology. This study aimed to characterise expression of the astrocyte marker N-myc downstream regulated gene 2 (NDRG2) in the ageing brain, investigate the relationship between NDRG2 and a panel of astrocyte markers, and relate NDRG2 expression to pathology. NDRG2 specifically immunolabelled the cell body and radiating processes of astrocytes in the temporal cortex of the Cognitive Function and Ageing Study (CFAS) neuropathology cohort. Expression of NDRG2 did not correlate with other astrocyte markers, including glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). NDRG2 showed a relationship to AT8+ neurofibrillary tangles (p = 0.001) and CD68+ microglia (p = 0.047), but not β-amyloid plaques or astrocyte nuclear γH2AX immunoreactivity, a marker of DNA damage response. These findings provide new insight into the astrocyte response to pathology in the ageing brain, and suggest NDRG2 may be a potential target to modulate this response
Recommended from our members
NDRG2 Expression Correlates with Neurofibrillary Tangles and Microglial Pathology in the Ageing Brain.
Astrocytes play a major role in the pathogenesis of a range of neurodegenerative diseases, including Alzheimer's disease (AD), undergoing dramatic morphological and molecular changes that can cause potentially both beneficial and detrimental effects. They comprise a heterogeneous population, requiring a panel of specific phenotype markers to identify astrocyte subtypes, changes in function and their relation to pathology. This study aimed to characterise expression of the astrocyte marker N-myc downstream regulated gene 2 (NDRG2) in the ageing brain, investigate the relationship between NDRG2 and a panel of astrocyte markers, and relate NDRG2 expression to pathology. NDRG2 specifically immunolabelled the cell body and radiating processes of astrocytes in the temporal cortex of the Cognitive Function and Ageing Study (CFAS) neuropathology cohort. Expression of NDRG2 did not correlate with other astrocyte markers, including glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). NDRG2 showed a relationship to AT8+ neurofibrillary tangles (p = 0.001) and CD68+ microglia (p = 0.047), but not β-amyloid plaques or astrocyte nuclear γH2AX immunoreactivity, a marker of DNA damage response. These findings provide new insight into the astrocyte response to pathology in the ageing brain, and suggest NDRG2 may be a potential target to modulate this response.MF is supported by a scholarship from King Abdulaziz University (KAU), funded by both KAU and the Saudi Arabian Ministry of Education. CFAS study is supported by the Department of Health and the Medical Research Council (grants MRC/G9901400 and MRC U.1052.00.0013); the UKNIHR Biomedical Research Centre for Ageing and Age-related Disease Award to the Newcastle upon Tyne Hospitals Foundation Trust; the Cambridge Brain Bank is supported by the NIHR Cambridge Biomedical Research Centre; The Cambridgeshire and Peterborough NIHR CLAHRC; Nottingham University Hospitals NHS Trust; University of Sheffield and the Sheffield Teaching Hospitals NHS Foundation Trust; The Thomas Willis Oxford Brain Collection, supported by the Oxford Biomedical Research Centre; The Walton Centre NHS Foundation Trust, Liverpool. The imaging equipment used in this study was funded by Sheffield charity Neurocare