10 research outputs found

    Association between cigarette smoking and the vaginal microbiota: a pilot study

    Get PDF
    Smoking has been identified in observational studies as a risk factor for bacterial vaginosis (BV), a condition defined in part by decimation of Lactobacillus spp. The anti-estrogenic effect of smoking and trace amounts of benzo[a]pyrene diol epoxide (BPDE) may predispose women to BV. BPDE increases bacteriophage induction in Lactobacillus spp. and is found in the vaginal secretions of smokers. We compared the vaginal microbiota between smokers and non-smokers and followed microbiota changes in a smoking cessation pilot study. In 2010–2011, 20 smokers and 20 non-smokers were recruited to a cross-sectional study (Phase A) and 9 smokers were enrolled and followed for a 12-week smoking cessation program (Phase B). Phase B included weekly behavioral counseling and nicotine patches to encourage smoking cessation. In both phases, participants self-collected mid-vaginal swabs (daily, Phase B) and completed behavioral surveys. Vaginal bacterial composition was characterized by pyrosequencing of barcoded 16S rRNA genes (V1-V3 regions). Vaginal smears were assigned Nugent Gram stain scores. Smoking status was evaluated (weekly, Phase B) using the semi-quantitative NicAlert® saliva cotinine test and carbon monoxide (CO) exhalation. In phase A, there was a significant trend for increasing saliva cotinine and CO exhalation with elevated Nugent scores (P value <0.005). Vaginal microbiota clustered into three community state types (CSTs); two dominated by Lactobacillus (L. iners, L. crispatus), and one lacking significant numbers of Lactobacillus spp. and characterized by anaerobes (termed CST-IV). Women who were observed in the low-Lactobacillus CST-IV state were 25-fold more likely to be smokers than those dominated by L. crispatus (aOR: 25.61, 95 % CI: 1.03-636.61). Four women completed Phase B. One of three who entered smoking cessation with high Nugent scores demonstrated a switch from CST-IV to a L.iners-dominated profile with a concomitant drop in Nugent scores which coincided with completion of nicotine patches. The other two women fluctuated between CST-IV and L. iners-dominated CSTs. The fourth woman had low Nugent scores with L. crispatus-dominated CSTs throughout. Smokers had a lower proportion of vaginal Lactobacillus spp. compared to non-smokers. Smoking cessation should be investigated as an adjunct to reducing recurrent BV. Larger studies are needed to confirm these findings.https://doi.org/10.1186/1471-2334-14-47

    Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets

    No full text
    <div><p>Background</p><p>Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention.</p><p>Results</p><p>In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles). Stool samples showed significant differences in alpha diversity (except Shannon’s index) and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (P<0.01), but not between nested PCR with 10 cycles in the first round and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance (sum of relative abundance <0.167) accounted for most of the distortion (>27% of total OTUs in stool).</p><p>Conclusions</p><p>Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work. However, rare taxa detected by nested PCR should be validated by other technologies.</p></div

    The details for nested and standard PCR design and number of successful PCR reactions in vagina and stool samples.

    No full text
    <p>Note, Primer pair 1 is 515F and 1492R; primer pair 2 is the tagged 515F and 806R.</p><p>The details for nested and standard PCR design and number of successful PCR reactions in vagina and stool samples.</p

    Principal coordinates analysis (PCoA) of weighted UniFrac distance.

    No full text
    <p>Proportion of variance explained by each axis is denoted in the corresponding axis labels. Each symbol (designated by the combination of color and shape) represents each subject with the open symbols for the nested PCRs and the closed symbols for the standard PCRs. For example, the blue circles represent subject 1 with open blue ones for two nested PCR results and closed blue ones for three standard PCR results.</p

    Clusters of stool samples based on bacterial genus relative abundance.

    No full text
    <p>Heatmaps were based on the hierarchical clustering solution (Bray-Curtis) distance metric and average clustering method. Row represents different sample ID (The number before the period is the subject ID; The text after the period is the PCR method used.). Columns represent the predominant bacterial genera with mean relative abundance of 0.01 or greater. The colors in the heatmaps represent the relative abundance of each genus, as indicated in the upper left corner of each panel.</p

    Summary of number of OTUs which were detected by only either nested PCRs or standard PCR controls when compared with each other for the matched samples.

    No full text
    <p>Summary of number of OTUs which were detected by only either nested PCRs or standard PCR controls when compared with each other for the matched samples.</p

    The impact of prenatal dog keeping on infant gut microbiota development

    No full text
    INTRODUCTION: Prenatal and early-life dog exposure has been linked to reduced childhood allergy and asthma. A potential mechanism includes altered early immune development in response to changes in the gut microbiome among dog-exposed infants. We thus sought to determine whether infants born into homes with indoor dog(s) exhibit altered gut microbiome development. METHODS: Pregnant women living in homes with dogs or in pet-free homes were recruited in southeast Michigan. Infant stool samples were collected at intervals between 1 week and 18 months after birth and microbiome was assessed using 16S ribosomal sequencing. Perinatal maternal vaginal/rectal swabs and stool samples were sequenced from a limited number of mothers. Mixed effect adjusted models were used to assess stool microbial community trajectories comparing infants from dog-keeping versus pet-free homes with adjustment for relevant covariates. RESULTS: Infant gut microbial composition among vaginally born babies became less similar to the maternal vaginal/rectal microbiota and more similar to the maternal gut microbiota with age-related accumulation of bacterial species with advancing age. Stool samples from dog-exposed infants were microbially more diverse (p = .041) through age 18 months with enhanced diversity most apparent between 3 and 6 months of age. Statistically significant effects of dog exposure on β-diversity metrics were restricted to formula-fed children. Across the sample collection period, dog exposure was associated with Fusobacterium genera enrichment, as well as enrichment of Collinsella, Ruminococcus, Clostridaceae and Lachnospiraceae OTUs. CONCLUSION: Prenatal/early-life dog exposure is associated with an altered gut microbiome during infancy and supports a potential mechanism explaining lessened atopy and asthma risk. Further research directly linking specific dog-attributable changes in the infant gut microbiome to the risk of allergic disorders is needed

    Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa

    Get PDF
    Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The approximately 150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development
    corecore