25 research outputs found

    Nutrient Sensing: Another Chemosensitivity of the Olfactory System

    Get PDF
    Olfaction is a major sensory modality involved in real time perception of the chemical composition of the external environment. Olfaction favors anticipation and rapid adaptation of behavioral responses necessary for animal survival. Furthermore, recent studies have demonstrated that there is a direct action of metabolic peptides on the olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates, amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust feeding behavior according to metabolic need. Here we summarize recent findings on nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge on this topic. The present review opens new lines of investigations on the relationship between olfaction and food intake, which could contribute to determining the etiology of metabolic disorders

    The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The signal transduction cascade operational in the vomeronasal organ (VNO) of the olfactory system detects odorants important for prey localization, mating, and social recognition. While the protein machinery transducing these external cues has been individually well characterized, little attention has been paid to the role of protein-protein interactions among these molecules. Development of an <it>in vitro </it>expression system for the transient receptor potential 2 channel (TRPC2), which establishes the first electrical signal in the pheromone transduction pathway, led to the discovery of two protein partners that couple with the channel in the native VNO.</p> <p>Results</p> <p>Homer family proteins were expressed in both male and female adult VNO, particularly Homer 1b/c and Homer 3. In addition to this family of scaffolding proteins, the chaperones receptor transporting protein 1 (RTP1) and receptor expression enhancing protein 1 (REEP1) were also expressed. RTP1 was localized broadly across the VNO sensory epithelium, goblet cells, and the soft palate. Both Homer and RTP1 formed protein-protein interactions with TRPC2 in native reciprocal pull-down assays and RTP1 increased surface expression of TRPC2 in <it>in vitro </it>assays. The RTP1-dependent TRPC2 surface expression was paralleled with an increase in ATP-stimulated whole-cell current in an <it>in vitro </it>patch-clamp electrophysiological assay.</p> <p>Conclusions</p> <p>TRPC2 expression and channel activity is regulated by chaperone- and scaffolding-associated proteins, which could modulate the transduction of chemosignals. The developed <it>in vitro </it>expression system, as described here, will be advantageous for detailed investigations into TRPC2 channel activity and cell signalling, for a channel protein that was traditionally difficult to physiologically assess.</p

    Mitral Cells of the Olfactory Bulb Perform Metabolic Sensing and Are Disrupted by Obesity at the Level of the Kv1.3 Ion Channel

    Get PDF
    Sixty-five percent of Americans are over-weight. While the neuroendocrine controls of energy homeostasis are well known, how sensory systems respond to and are impacted by obesity is scantily understood. The main accepted function of the olfactory system is to provide an internal depiction of our external chemical environment, starting from the detection of chemosensory cues. We hypothesized that the system additionally functions to encode internal chemistry via the detection of chemicals that are important indicators of metabolic state. We here uncovered that the olfactory bulb (OB) subserves as an internal sensor of metabolism via insulin-induced modulation of the potassium channel Kv1.3. Using an adult slice preparation of the olfactory bulb, we found that evoked neural activity in Kv1.3-expressing mitral cells is enhanced following acute insulin application. Insulin mediated changes in mitral cell excitability are predominantly due to the modulation of Kv1.3 channels as evidenced by the lack of effect in slices from Kv1.3-null mice. Moreover, a selective Kv1.3 peptide blocker (ShK186) inhibits more than 80% of the outward current in parallel voltage-clamp studies, whereby insulin significantly decreases the peak current magnitude without altering the kinetics of inactivation or deactivation. Mice that were chronically administered insulin using intranasal delivery approaches exhibited either an elevation in basal firing frequency or fired a single cluster of action potentials. Following chronic administration of the hormone, mitral cells were inhibited by application of acute insulin rather than excited. Mice made obese through a diet of ∼32% fat exhibited prominent changes in mitral cell action potential shape and clustering behavior, whereby the subsequent response to acute insulin stimulation was either attenuated or completely absent. Our results implicate an inappropriate neural function of olfactory sensors following exposure to chronic levels of the hormone insulin (diabetes) or increased body weight (obesity)

    Vomeronasal Sensory Neurons from Sternotherus Odoratus (Stinkpot/Musk Turtle) Respond to Chemosignals via the Phospholipase C System

    Get PDF
    The mammalian signal transduction apparatus utilized by vomeronasal sensory neurons (VSNs) in the vomeronasal organ (VNO) has been richly explored, while that of reptiles, and in particular, the stinkpot or musk turtle Sternotherus odoratus, is less understood. Given that the turtle\u27s well-known reproductive and mating behaviors are governed by chemical communication, 247 patch-clamp recordings were made from male and female S. odoratus VSNs to study the chemosignal-activated properties as well as the second-messenger system underlying the receptor potential. Of the total neurons tested, 88 (35%) were responsive to at least one of five complex natural chemicals, some of which demonstrated a degree of sexual dimorphism in response selectivity. Most notably, male VSNs responded to male urine with solely outward currents. Ruthenium Red, an IP3 receptor (IP3R) antagonist, failed to block chemosignal-activated currents, while the phospholipase C (PLC) inhibitor, U73122, abolished the chemosignal-activated current within 2 min, implicating the PLC system in the generation of a receptor potential in the VNO of musk turtles. Dialysis of several second messengers or their analogues failed to elicit currents in the whole-cell patch-clamp configuration, negating a direct gating of the transduction channel by cyclic adenosine monophosphate (cAMP), inositol 1,4,5-trisphosphate (IP3), arachidonic acid (AA), or diacylglycerol (DAG). Reversal potential analysis of chemosignal-evoked currents demonstrated that inward currents reversed at -5.7+/-7.8 mV (mean +/- s.e.m.; N=10), while outward currents reversed at -28.2+/-2.4 mV (N=30). Measurements of conductance changes associated with outward currents indicated that the outward current represents a reduction of a steady state inward current by the closure of an ion channel when the VSN is exposed to a chemical stimulus such as male urine. Chemosignal-activated currents were significantly reduced when a peptide mimicking a domain on canonical transient receptor potential 2 (TRPC2), to which type 3 IP3 receptor (IP3R3) binds, was included in the recording pipette. Collectively these data suggest that there are multiple transduction cascades operational in the VSNs of S. odoratus, one of which may be mediated by a non-selective cation conductance that is not gated by IP3 but may be modulated by the interaction of its receptor with the TRPC2 channel

    Elevated Anxiety and Impaired Attention in Super-Smeller, Kv1.3 Knockout Mice

    No full text
    It has long been recognized that olfaction and emotion are linked. While chemosensory research using both human and rodent models have indicated a change in emotion can contribute to olfactory dysfunction, there are few studies addressing the contribution of olfaction to a modulation in emotion. In mice, olfactory deficits have been linked with heightened anxiety levels, suggesting that there could be an inverse relationship between olfaction and anxiety. Furthermore, increased anxiety is often co-morbid with psychiatric conditions such as attention disorders. Our study aimed to investigate the roles of olfaction in modulating anxiety. Voltage-gated potassium ion channel Kv1.3 knockout mice (Kv1.3βˆ’/βˆ’), which have heightened olfaction, and wild-type (WT) mice were examined for anxiety-like behaviors using marble burying (MB), light-dark box (LDB) and elevated-plus maze (EPM) tests. Because Kv1.3βˆ’/βˆ’ mice have increased locomotor activity, inattentive and hyperactive behaviors were quantified for both genotypes. Kv1.3βˆ’/βˆ’ mice showed increased anxiety levels compared to their WT counterparts and administration of methylphenidate (MPH) via oral gavage alleviated their increased anxiety. Object-based attention testing indicated young and older Kv1.3βˆ’/βˆ’ mice had attention deficits and treatment with MPH also ameliorated this condition. Locomotor testing through use of a metabolic chamber indicated that Kv1.3βˆ’/βˆ’ mice were not significantly hyperactive and MPH treatment failed to modify this activity. Our data suggest that heightened olfaction does not necessarily lead to decreased anxiety levels, and that Kv1.3βˆ’/βˆ’ mice may have behaviors associated with inattentiveness

    Heterogeneity Of Voltage- and Chemosignal-Activated Response Profiles in Vomeronasal Sensory Neurons

    No full text
    Liolaemus lizards were explored to ascertain whether they would make an amenable model to study single-cell electrophysiology of neurons in the vomeronasal organ (VNO). Despite a rich array of chemosensory-related behaviors chronicled for this genus, no anatomical or functional data exist for the VNO, the organ mediating these types of behaviors. Two Liolaemus species (L. bellii and L. nigroviridis) were collected in Central Chile in the Farellones Mountains and transported to the United States. Lizards were subjected to hypothermia and then a lethal injection of sodium pentabarbitol prior to all experiments described in the following text. Retrograde dye perfusion combined with histological techniques demonstrated a compartmentalization of the proportionally large VNO from the main olfactory epithelium (MOE) in cryosections of L. bellii. SDS-PAGE analysis of the VNO of both species demonstrated the expression of three G protein subunits, namely, G(alphao), G(alphai2), and G(beta), and the absence of G(alphaolf), G(alpha11), and G(q), the latter of which are traditionally found in the MOE. Vomeronasal (VN) neurons were enzymatically isolated for whole cell voltage-clamp electrophysiology of single neurons. Both species demonstrated a tetrodotoxin (TTX)-sensitive, rapidly inactivating sodium current and a tetraethylammonium (TEA)-sensitive potassium current that had a transient and sustained component. VN neurons were classified into two types dependent on the ratio of sodium over sustained potassium current. VN neurons exhibited outward and inward chemosignal-evoked currents when stimulated with pheromone-containing secretions taken from the feces, skin, and precloacal pores. Fifty-nine percent of the neurons were responsive to at least one compound when presented with a battery of five different secretions. The breadth of responsiveness (H metric) demonstrated a heterogeneous population of tuning with a mean of 0.29
    corecore