3 research outputs found

    Electrical Communication and its Physiological Relevance in Retinal Pigment Epithelium

    Get PDF
    Verkkokalvon pigmenttiepiteeli (eng. retinal pigment epithelium, RPE) tekee tiivistä yhteistyötä verkkokalvon kanssa turvatakseen näköaistin toiminnan. Useita RPE:n tärkeimpiä tehtäviä, kuten valoa aistivien näköaistinsolujen uusiutumista, säädellään ionikanavien avulla. Näiden kanavien toimintaa ja RPE:n kykyä säädellä kalvopotentiaaliaan ei kuitenkaan vielä täysin ymmärretä. Tässä väitöskirjatyössä tutkittiin jänniteherkkien ionikanavien toimintaa sekä RPE:n sähköistä kytkeytyvyyttä käyttäen mallina ihmisen alkion kantasoluista erilaistettuja RPE-soluja sekä hiiren RPE-kudosta. Jänniteherkät natriumkanavat (NaV) tunnetaan parhaiten osallisuudestaan aktiopotentiaalin synnyssä hermosoluissa, mutta näiden kanavien tiedetään esiintyvän myös useissa muissa solutyypeissä, kuten makrofageissa ja astrosyyteissä, joissa aktiopotentiaaleja ei lähtökohtaisesti muodostu. NaV kanavien ei kuitenkaan uskottu esiintyvän RPE-kudoksessa huolimatta siitä, että niitä on toisinaan havaittu RPE-soluviljelmissä. Tämä väitöskirjatyö osoitti, että sekä kantasoluista erilaistetuissa RPE-soluissa että hiiren RPE-soluissa ilmentyy useita NaV- kanavaperheen alatyyppejä. Samalla havaittiin, että aikaisempi virheellinen johtopäätös aiheutui tutkimusten suorittamisesta yksittäisillä soluilla toiminnallisen kudoksen sijaan. Tässä työssä osoitettiin myös löydettyjen Nav-kanavatyyppien toiminnallisuus sähköfysiologisilla mittauksilla. Merkittävimpien kanavatyyppien (NaV1.4–NaV1.6 sekä NaV1.8) havaittiin sijoittuvan solu-soluliitoksiin tai RPE:n apikaaliselle solukalvolle. RPE-solujen sähköfysiogisia mittauksia on tyypillisesti tehty yksittäisistä eristetyistä soluista. Tästä johtuen RPE-solujen sähköistä kytkeytyvyyttä ei ole selvitetty nisäkkäillä, vaikka tiedetään, että aukkoliitoksilla on tärkeitä tehtäviä silmän kehityksessä. Tämä väitöskirjatyö osoitti, että solujen merkittävin aukkoliitosproteiini (engl. Connexin, Cx) on Cx43, jonka havaittiin muodostavan sekä aukkoliitoksia että puolikkaita hemikanavia solujen apikaalisella pinnalla. Sähköfysiologiset mittaukset osoittivat, että RPE:n laajasta aukkoliitosten verkostosta huolimatta RPE-solujen välinen kytkeytyvyys on suhteellisen alhainen. Kytkeytyvyyttä voitiin kuitenkin säädellä aukkoliitosten farmakologisilla estäjillä, tai estämällä tietyn Cdk5 (engl. cyclin-dependent kinase 5) kinaasi-entsyymin toimintaa. NaV-kanavien ja aukkoliitosten merkitystä RPE:n fysiologiassa tutkittiin keskittymällä näköaistinsolujen kalvojen uusiutumiseen, jossa RPE:n solusyönti eli fagosytoosi on merkittävässä roolissa. Tulokset osoittivat, että fagosytoosin aikana NaV-alatyypit NaV1.4 ja NaV1.8 esiintyvät lähellä näköaistinsolujen kalvopartikkeleita. NaV-kanavien toiminnan estäminen farmakologisesti tai geneettisesti (engl. short hairpin RNA, shRNA) vähensi merkittävästi fagosytoosin tehokkuutta. Lisäksi näiden kanavien havaittiin paikantuvan sekä apikaalipinnalle muodostuviin fagosytoosi-kuppeihin, että jo sisään otettuihin fagosomeihin yhdessä endosomien markkeriproteiinien (engl. rat sarcoma virus-related protein, Rab7) kanssa. Nämä tulokset antavat viitteitä siitä, että NaV-kanavilla olisi monipuolisia tehtäviä fagosytoosin aikana. NaV-kanavien lisäksi myös Cx43:n havaittiin esiintyvän näköaistinsolujen kalvopartikkelien kanssa fagosytoosissa ja tulokset antavat viitteitä siitä, että aukkoliitoksia otetaan solujen sisälle prosessin aikana. Fosforylaation havaittiin säätelevän tätä aukkoliitosten siirtymää ja erityisesti Cdk5-, ja proteiinikinaasi C- entsyymeillä oli merkittävä rooli tässä säätelyssä. Tämän työn tulokset osoittivat, että Cx43 liittyy fagosytoosikuppien muodostukseen sekä solujen aktiini-tukirangan uudelleen järjestymiseen. Fagosytoosin säätelyn tiedetään perustuvan vuorokausirytmiin ja mielenkiintoista on, että Cdk5-kinaasin on osoitettu vaikuttavan tähän rytmiin. On siis mahdollista, että Cdk5 auttaa myös fagosytoosin ajoituksen säätelyssä. Kokonaisuutena työni osoittaa RPE:n fysiologian ja sen ionikanavakoneiston säätelyn monimutkaisuuden. Nav-kanavien roolin on havaittu olevan huomattavasti monipuolisempi kuin aktiopotentiaalien muodostus hermosoluissa ja tuloksemme vahvistavat tätä käsitystä. Yksi työni yllättävimmistä ja merkittävimmistä tuloksista oli, että RPE voi säädellä kalvojännitettään ja epiteelikudoksen solujen välistä viestintäänsä nopeasti. Tarkemmat tiedot tämän ionisignaloinnin roolista fagosytoosissa lisäävät ymmärrystämme prosessista, joka on merkittävä näkökyvyllemme. Yhteenvetona tämä työ osoittaa, että RPE:n rooli yhteistyössä verkkokalvon kanssa on paljon aktiivisempi kuin on aikaisemmin luultu.Retinal pigment epithelium (RPE) is a tissue that preserves the health and functionality of its closely associated neural tissue, the retina. Many of the essential functions of RPE, including the renewal of light-sensing retinal photoreceptors, are regulated by ion channels. Yet, the involved ionic mechanisms, the extent of membrane potential dynamics, and the intercellular communication are not entirely understood. In this thesis, I studied the voltage-gated ion channels and electrical coupling of RPE in both human embryonic stem cell-derived and mouse RPE. Voltage-gated sodium channels (NaV), while best known for their role in action potential generation, are expressed in several non-excitable cell types such as macrophages and astrocytes. Yet, these channels had not been considered to exist in native RPE, although they had occasionally been detected in cell culture. This thesis demonstrates that stem cell-derived and mouse RPE exhibit several subtypes of NaV channels and that their earlier dismissal was due to cell isolation procedures. Our electrophysiological recordings showed that these identified NaV channels are functional. The main channel subtypes NaV1.4–NaV1.6 and NaV1.8 were found to localize in the cell-cell junctions or apical membrane in RPE. As the conventional method to carry out electrophysiological recordings in RPE is to use single cells, the electrical connectivity had not been characterized in mammalian RPE, despite the importance of gap junctions in ocular development. In this thesis, we showed that the major connexin (Cx) isoform was Cx43 which was found to form both gap junctions and apical hemichannels. The electrophysiological recordings demonstrated that the electrical connectivity was relatively low despite the extensive network of gap junctions in RPE. Yet, it was modifiable by gap junction blockers or by inhibiting a specific kinase known as cyclin-dependent kinase 5 (Cdk5). The significance of NaV channels and gap junctions to RPE physiology was investigated by focusing on the renewal of photoreceptor outer segments, where phagocytosis by RPE plays a key role. The results demonstrated that NaV subtypes NaV1.4 and NaV1.8 localize with the outer segments during phagocytosis. Moreover, inhibiting the activity of NaV channels with pharmacological modulators or short hairpin RNA (shRNA) significantly impaired phagocytosis efficiency. Furthermore, Nav channels were found to localize to the forming phagocytic cups in the apical membrane and the ingested phagosomes together with an endosomal marker Rab7. The results obtained in this thesis imply that NaV channels have versatile roles in phagocytosis. In addition to NaV channels, Cx43 localized adjacent to outer segments during phagocytosis, and the results indicate that gap junctions are internalized during the process. This translocation of gap junctions was shown to be regulated by phosphorylation, particularly by kinases such as Cdk5 and protein kinase C. The results obtained in this thesis imply that Cx43 is involved in the formation of phagocytic cups. As phagocytosis is known to be under circadian control, and Cdk5 has previously been shown to regulate this cycle, it is plausible that Cdk5 helps to control the rhythm of photoreceptor renewal. Our results highlight the complexity of RPE physiology and its ion channel machinery. The findings add to the growing body of evidence demonstrating that NaV channels' role is much more diverse than action potential generation. The results show that RPE can generate fast changes in voltage and rapidly modify its cell-cell connectivity across the epithelium. Gaining a deeper understanding of the involvement of ionic mechanisms in phagocytosis could help us to understand the phagocytosis pathway both in the healthy and diseased eye. Ultimately, this work highlights that RPE's role in its interaction with the neural retina is far more active than was previously thought

    Light-Induced Nanoscale Deformation in Azobenzene Thin Film Triggers Rapid Intracellular Ca2+ Increase via Mechanosensitive Cation Channels

    Get PDF
    Epithelial cells are in continuous dynamic biochemical and physical interaction with their extracellular environment. Ultimately, this interplay guides fundamental physiological processes. In these interactions, cells generate fast local and global transients of Ca2+ ions, which act as key intracellular messengers. However, the mechanical triggers initiating these responses have remained unclear. Light-responsive materials offer intriguing possibilities to dynamically modify the physical niche of the cells. Here, a light-sensitive azobenzene-based glassy material that can be micropatterned with visible light to undergo spatiotemporally controlled deformations is used. Real-time monitoring of consequential rapid intracellular Ca2+ signals reveals that the mechanosensitive cation channel Piezo1 has a major role in generating the Ca2+ transients after nanoscale mechanical deformation of the cell culture substrate. Furthermore, the studies indicate that Piezo1 preferably responds to shear deformation at the cell-material interphase rather than to absolute topographical change of the substrate. Finally, the experimentally verified computational model suggests that Na+ entering alongside Ca2+ through the mechanosensitive cation channels modulates the duration of Ca2+ transients, influencing differently the directly stimulated cells and their neighbors. This highlights the complexity of mechanical signaling in multicellular systems. These results give mechanistic understanding on how cells respond to rapid nanoscale material dynamics and deformations.Peer reviewe

    Gap junctions and connexin hemichannels both contribute to the electrical properties of retinal pigment epithelium

    Get PDF
    Gap junctions are intercellular channels that permit the transfer of ions and small molecules between adjacent cells. These cellular junctions are particularly dense in the retinal pigment epithelium (RPE), and their contribution to many retinal diseases has been recognized. While gap junctions have been implicated in several aspects of RPE physiology, their role in shaping the electrical properties of these cells has not been characterized in mammals. The role of gap junctions in the electrical properties of the RPE is particularly important considering the growing appreciation of RPE as excitable cells containing various voltage-gated channels. We used a whole-cell patch clamp to measure the electrical characteristics and connectivity between RPE cells, both in cultures derived from human embryonic stem cells and in the intact RPE monolayers from mouse eyes. We found that the pharmacological blockade of gap junctions eliminated electrical coupling between RPE cells, and that the blockade of gap junctions or Cx43 hemichannels significantly increased their input resistance. These results demonstrate that gap junctions function in the RPE not only as a means of molecular transport but also as a regulator of electrical excitability.peerReviewe
    corecore