13 research outputs found

    Table_1_Effects of pre-partum dietary crude protein level on colostrum fat globule membrane proteins and the performance of Hu ewes and their offspring.XLSX

    No full text
    Dietary proteins play important roles in the growth and reproduction of sheep, and the ewe's demand for proteins increases dramatically during late pregnancy. This research aimed to investigate the effect of dietary crude protein (CP) levels during late pregnancy on colostrum fat globule membrane (MFGM) protein and the growth performance of Hu sheep and their offspring, and provide a reference for the protein intake of ewes during late pregnancy. A total of 108 multiparous Hu sheep (45.6 ± 1.18 kg) were selected for this study, then 60 pregnant ewes confirmed by B-scan ultrasonography were randomly divided into three treatments (20 ewes/treatment) and fed by total mixed ration pellet with CP levels at 9.00% (LP), 12.0% (MP), and 15.0% (HP) during late pregnancy, respectively. The weight and dry matter intake of ewes during late pregnancy were recorded to calculate the average daily gain (ADG) and feed conversion ratio (FCR). Twin lambs were weighed on days 0, 7, 14, 30, 60, and 180 after birth to calculate ADG. Meanwhile, the colostrum of ewes was collected within 12 h after delivery. The colostrum MFGM proteins were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry methods. In addition, biological functions of differentially expressed proteins (DEPs) were annotated by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results revealed that a 15.0% CP level had significant effects on the BW of lambs on days 0, 7, and 30 (P < 0.05). Notably, a total of 1,529 MFGM proteins were identified and 286 DEPs were found among three treatments. Functional analysis showed that DEPs were mainly involved in cell growth, differentiation, and tissue repair, and involved in metabolic pathways, such as the porphyrin and chlorophyll metabolism pathways. In this study, lambs in HP treatment had better growth performance; moreover, dietary 15.0% CP level also affected the colostrum MFGM proteins composition of Hu ewes. These observations can facilitate future studies on the feeding regimen of ewes during late pregnancy.</p

    Expression profile of <i>FASN</i> gene and association of its polymorphisms with intramuscular fat content in Hu sheep

    No full text
    The content of intramuscular fat (IMF) is one of the most important factors that has a large impact on meat quality, and it is an effective way to improve IMF according to marker-assisted selection (MAS). Fatty-acid synthase (FASN) is a key gene in meat lipid deposition and fatty acid composition. Thus, this study was conducted to investigate the expression profile of FASN in mRNA and protein levels using real-time quantitative PCR (RT-qPCR) and western-blot methods. In addition, single nucleotide polymorphisms (SNPs) within FASN in 921 Hu rams with IMF content records were investigated using DNA-pooling sequencing and improved multiple ligase detection reaction (iMLDR) methods. Consequently, the highest mRNA expression level of FASN was observed in the perinephric fat, and the lowest in the liver among the 11 tissues analyzed, while no significant difference was found in mRNA and protein expression levels in longissimus dorsi among individuals with different IMF contents. A total of 10 putative SNPs were identified within FASN, and 9 of them can be genotyped by iMLDR method. Notably, two SNPs were significantly associated with IMF content, including NC_040262.1: g.5157 A > G in intron 5 (p = 0.046) and NC_040262.1: g.9413 T > C in intron 16 (p = 0.041), which supply molecular markers for improving meat quality in sheep breeding.</p

    Laser Tuning in van der Waals Crystals

    No full text
    The great progress that optoelectronic technologies have achieved in van der Waals crystals promises the development of next-generation two-dimensional (2D) integrated optoelectronic systems (IOSs). Here, relying on the anomalous avoidance of pump-light absorption, the harvest of extremely strong Raman scattering, and the achievement of polarization inheritance by the designed optical geometry, we realized laser wavelength tuning with ultrahigh precision (0.01 nm/25 K) in layered MoS<sub>2</sub> and WS<sub>2</sub> by adjusting the temperature. Our results offer a potential approach for 2D laser tuning, while also building a substantial theoretical foundation, which might be of use in developing future wavelength-division-multiplexing technology in 2D IOSs

    Table_3_Effect of Early Weaning on the Intestinal Microbiota and Expression of Genes Related to Barrier Function in Lambs.DOCX

    No full text
    <p>Weaning stress has been reported to impair intestinal health. The gut microbiota plays a vital role in the long-term health of the host. However, our understanding of weaning stress on gut microbiota and barrier function is very limited in livestock species, especially lambs. We investigated the effects of early weaning stress on intestinal bacterial communities and intestinal barrier function in lambs. A total of 24 neonatal male Hu lambs were randomly allocated into two groups, one weaned on day 28 and the other weaned on day 56. At 42 and 84 days, six lambs from each group were randomly selected and sacrificed. Ileal tissue and ileal digesta were collected to compare the differences in ileal microbiota and the mRNA levels of Toll-like receptors (TLRs) and tight junction proteins between the early weaning group and the control group at day 42 when the early weaning group have been weaned for 14 days, and at day 84 when the 28 and 56 days weaning groups had been weaned for 56 and 28 days, respectively. 16S rRNA gene sequencing of ileal samples revealed that the ileal microbiota was very different between the two groups, even at 84 days of age. Early weaning significantly increased alpha diversity and altered the relative abundance of several bacterial taxa. The expression of genes related to intestinal barrier function was affected by early weaning. Early weaning significantly increased ileal mRNA levels of TLR1 on days 42 and 84; TLR2, TLR4, and TLR5 on day 84; claudin1 and claudin4 on day 42; and occludin on day 84. We demonstrate that early weaning not only altered the ileal microbiota on day 42 (compared with lambs that were not weaned), but also had lasting effects on the ileal microbiota at day 84; furthermore, early weaning impacts expression levels of genes related to intestinal barrier function.</p

    RT-PCR analysis of the amont of BTN1A1 (a), ACACA(b) and CSN2 (c).

    No full text
    <p>A: mammary gland; B: epithelial cells cultured in inducentment meida; C: resuscitated epithelial cells cultured in inducement meida; D: epithelial cells cultured in growth meida.</p

    Table_1_Effect of Early Weaning on the Intestinal Microbiota and Expression of Genes Related to Barrier Function in Lambs.DOCX

    No full text
    <p>Weaning stress has been reported to impair intestinal health. The gut microbiota plays a vital role in the long-term health of the host. However, our understanding of weaning stress on gut microbiota and barrier function is very limited in livestock species, especially lambs. We investigated the effects of early weaning stress on intestinal bacterial communities and intestinal barrier function in lambs. A total of 24 neonatal male Hu lambs were randomly allocated into two groups, one weaned on day 28 and the other weaned on day 56. At 42 and 84 days, six lambs from each group were randomly selected and sacrificed. Ileal tissue and ileal digesta were collected to compare the differences in ileal microbiota and the mRNA levels of Toll-like receptors (TLRs) and tight junction proteins between the early weaning group and the control group at day 42 when the early weaning group have been weaned for 14 days, and at day 84 when the 28 and 56 days weaning groups had been weaned for 56 and 28 days, respectively. 16S rRNA gene sequencing of ileal samples revealed that the ileal microbiota was very different between the two groups, even at 84 days of age. Early weaning significantly increased alpha diversity and altered the relative abundance of several bacterial taxa. The expression of genes related to intestinal barrier function was affected by early weaning. Early weaning significantly increased ileal mRNA levels of TLR1 on days 42 and 84; TLR2, TLR4, and TLR5 on day 84; claudin1 and claudin4 on day 42; and occludin on day 84. We demonstrate that early weaning not only altered the ileal microbiota on day 42 (compared with lambs that were not weaned), but also had lasting effects on the ileal microbiota at day 84; furthermore, early weaning impacts expression levels of genes related to intestinal barrier function.</p

    Western-Blotting analysis of the amont of β-casein.

    No full text
    <p>A: mammary gland; B: epithelial cells cultured in inducentment meida; C: resuscitated epithelial cells cultured in inducement meida; D: epithelial cells cultured in growth meida.</p
    corecore