429 research outputs found

    Some numerical simulation results of the dynamic temperature distribution in dc plasma torch Thermoplasma 50-01

    Get PDF
    © Published under licence by IOP Publishing Ltd. A DC plasma torch "Thermoplasma 50-01" has been modeled and simulated by developing a 2D axisymmetric model of laminar flow and heat transfer coupled to electromagnetic fields. As a result of the numerical solution, the dynamics of the formation of the temperature field and the velocity field in the plasma torch channel and at its exit is presented. The numerical results of the gas temperature and axial velocity result to be quite satisfactory

    Asymptotic Infrared Fractal Structure of the Propagator for a Charged Fermion

    Full text link
    It is well known that the long-range nature of the Coulomb interaction makes the definition of asymptotic ``in'' and ``out'' states of charged particles problematic in quantum field theory. In particular, the notion of a simple particle pole in the vacuum charged particle propagator is untenable and should be replaced by a more complicated branch cut structure describing an electron interacting with a possibly infinite number of soft photons. Previous work suggests a Dirac propagator raised to a fractional power dependent upon the fine structure constant, however the exponent has not been calculated in a unique gauge invariant manner. It has even been suggested that the fractal ``anomalous dimension'' can be removed by a gauge transformation. Here, a gauge invariant non-perturbative calculation will be discussed yielding an unambiguous fractional exponent. The closely analogous case of soft graviton exponents is also briefly explored.Comment: Updated with a corrected sign error, longer discussion of fractal dimension, and more reference

    Music Tune Restoration Based on a Mother Wavelet Construction

    Get PDF
    It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one

    Multitemporal generalization of the Tangherlini solution

    Full text link
    The n-time generalization of the Tangherlini solution [1] is considered. The equations of geodesics for the metric are integrated. For n=2n = 2 it is shown that the naked singularity is absent only for two sets of parameters, corresponding to the trivial extensions of the Tangherlini solution. The motion of a relativistic particle in the multitemporal background is considered. This motion is governed by the gravitational mass tensor. Some generalizations of the solution, including the multitemporal analogue of the Myers-Perry charged black hole solution, are obtained.Comment: 14 pages. RGA-CSVR-005/9

    Calculation of the distribution of temperature in the form based on magnesium oxide for the casting of titanium products

    Get PDF
    © 2018 Institute of Physics Publishing. All rights reserved. Calculations of the distribution of temperature in the mold based on magnesite oxide, when casting products from titanium alloys, are presented. It is shown that in the mold based on magnesite oxide it cools down exponentially to ambient temperature

    Energy separation of single-particle and continuum states in a S=1/2 weakly-coupled chains antiferromagnet

    Full text link
    Inelastic neutron scattering is used to study transverse-polarized magnetic excitations in the quasi-one-dimensional S=1/2 antiferromagnet BaCu_2Si_2O_7, where the saturation value for the N\'eel order parameter is m0=0.12μBm_0=0.12 \mu_{\rm B} per spin. At low energies the spectrum is totally dominated by resolution-limited spin wave-like excitations. An excitation continuum sets in above a well-defined threshold frequency. Experimental results are discussed in the context of current theories for weakly-interacting quantum half-integer spin chains.Comment: 4 pages 4 figure

    Structural and magnetic studies of FE100–xCox nanotubes obtaine by template method

    Full text link
    Hollow nanostructures based on the Fe100–xCox alloy were synthesized in the pores of polymer template matrices based on PET using the electrochemical deposition method. Morphology, elemental composition, and structural features were characterized by scanning electron microscopy, energy dispersive analysis, and X-ray diffractometry. The study of the internal magnetic texture was carried out using Mossbauer spectroscopy. The dependence of the change in structural and magnetic properties from the atomic content of components in nanotube structure is revealed. It is established that the synthesized nanostructures are hollow Fe100–xCox nanotubes with a body-centered cubic crystal structure. The decrease in the unit cell parameter with increasing cobalt concentration is due to the difference in the radii of Fe (1.227 Å) and Co (1.191 Å) atoms. It is established that a random distribution of magnetic moments directions of Fe atoms is observed for Fe100Co0 nanotubes. And magnetic texture along the nanotube axis is observed for Fe100–xCox nanotubes, with an increase in Co atoms concentration. The average angle between the direction of the magnetic moment of iron atoms and the nanotube axis decreases from v = 54:6° to v = 24:5°. © 2018, Electromagnetics Academy. All rights reserved

    Processes occurring during the manufacture of form based on magnesite oxide and casting titanium products

    Get PDF
    © 2018 Institute of Physics Publishing. All rights reserved. In this work investigate the chemical processes occurring during the manufacture of magnesium oxide-based mold and casting titanium products to prevent the formation of alpha case. When molten titanium is poured into the mold due to low thermal conductivity the mold is heated unevenly. The resulting carbon dioxide and active metal compounds migrate to the more heated regions adjacent to the surface of the casting. The increased concentration on the surface of the O, Si, Ca, Na forms promotes the reactions to form active metal titanates

    Weakly Interacting, Dilute Bose Gases in 2D

    Full text link
    This article surveys a number of theoretical problems and open questions in the field of two-dimensional dilute Bose gases with weak repulsive interactions. In contrast to three dimensions, in two dimensions the formation of long-range order is prohibited by the Bogoliubov-Hohenberg theorem, and Bose-Einstein condensation is not expected to be realized. Nevertheless, first experimental indications supporting the formation of the condensate in low dimensional systems have been recently obtained. This unexpected behaviour appears to be due to the non-uniformity, introduced into a system by the external trapping potential. Theoretical predictions, made for homogeneous systems, require therefore careful reexamination. We survey a number of popular theoretical treatments of the dilute weakly interacting Bose gas and discuss their regions of applicability. The possibility of Bose-Einstein condensation in a two-dimensional gas, the validity of perturbative t-matrix approximation and diluteness condition are issues that we discuss in detail.Comment: Survey, 25 pages RMP style, revised version, refs added, some changes made, accepted for publication in Rev. Mod. Phy
    corecore