4 research outputs found

    Effect of polyethelene oxide on the thermal degradation of cellulose biofilm : low cost material for soft tissue repair in dentistry

    Get PDF
    Bio cellulose is a byproduct of sweet tea fermentation known as kombusha. During the biosynthesis by bacteria cellulose chains are polymerized by enzyme from activated glucose. The single chains are then extruded through the bacterial cell wall. Interestingly, a potential of the Kombucha?s byproduct bio cellulose (BC) as biomaterial had come into focus only in the past few decades. The unique physical and mechanical properties such as high purity, an ultrafine and highly crystalline network structure, a superior mechanical strength, flexibility, pronounced permeability to gases and liquids, and an excellent compatibility with living tissue that reinforced by biodegradability, biocompatibility, large swelling ratios. The bio-cellulose film specimens were provided by the R.P Dressel dental materials laboratory, Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, US. The films were harvested, washed with water and dried at room temperature overnight. 1wt% of PEG-2000 and 10wt% of NaOH were added into ultrapure water to prepare PEG/NaOH solution. Then bio-cellulose film was added to the mixture and swell for 3 h at room temperature. All bio-cellulose film specimens were all used in the TA Instruments Q500 Thermogravmetric Analyzer to investigate weight percent lost and degradation. The TGA was under ambient air conditions at a heating rate of 10ÂșC/min. PEG control exhibited one transition with the peak at 380ÂșC. Cellulose and cellulose/ PEG films showed 3 major transitions. Interestingly, the cellulose/PEG film showed slightly elevated temperatures when compared to the corresponding transitions for cellulose control. The thermal gravimetric analysis (TGA) degradation curves were analyzed. Cellulose control film exhibited two zero order transitions, that indicate the independence of the rate of degradation from the amount on the initial substance. The activation energies for three transitions for cellulose and cellulose/PEG showed increasingly higher values for the transitions at higher temperatures

    Image quality evaluation of eight complementary metalĂą oxide semiconductor intraoral digital XĂą ray sensors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134084/1/idj12241_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134084/2/idj12241.pd

    Lean Management—The Journey from Toyota to Healthcare

    Get PDF
    The evolution of production systems is tightly linked to the story of Toyota Motor Company (TMC) that has its roots around 1918. The term “lean” was coined in 1990 following the exploration of the Toyota model that led to the “transference” thesis sustaining the concept that manufacturing problems and technologies are universal problems faced by management and that these concepts can be emulated in non-Japanese enterprises. Lean is a multi-faceted concept and requires organizations to exert effort along several dimensions simultaneously; some consider a successful implementation either achieving major strategic components of lean, implementing practices to support operational aspects, or providing evidence that the improvements are sustainable in the long term. The article explores challenges and opportunities faced by organizations that intend incorporating lean management principles and presents the specific context of the healthcare industry. Finally, the concepts of “essential few” and customer value are illustrated through a simple example of process change following lean principles, which was implemented in a dental school in the United States

    Brittleness index and its relationship with materials mechanical properties: Influence on the machinability of CAD/CAM materials

    No full text
    Abstract: The aim of this study is to evaluate the machinability of four CAD/CAM materials (n = 13) assessed by brittleness index, Vickers hardness, and fracture toughness and interaction among such mechanical properties. The materials selected in this in vitro study are Feldspathic ceramic [FC], Lithium-disilicate glass ceramic [LD], leucite-reinforced glass ceramic [LR], and nanofilled resin material [RN]. Slices were made from the blocks following original dimensions 14 × 12 × 3 mm (L × W × H), using a precision slow-speed saw device and then surfaces were regularized through a polishing device. Brittleness index and fracture toughness were calculated by the use of specific equations for each one of the properties. The Vickers hardness was calculated automated software in the microhardness device. One-way Anova and Pearson's correlation were applied to data evaluation. LD obtained the highest values for brittleness index and was not significantly different from FC. LR presented statistically significant difference compared with RN, which had the lowest mean. Vickers hardness showed LD with the highest average, and no statistical difference was found between FC and LR. RN presented the lowest average. Fracture toughness showed FC and LR not statistically different from each other, likewise LD and RN. The brittleness index, considered also as the machinability of a material, showed within this study as positively dependent on Vickers hardness, which leads to conclusion that hardness of ceramics is related to its milling capacity. In addition, fracture toughness of pre-sintered ceramics is compared to polymer-based materials
    corecore