5 research outputs found

    Liquid encapsulated float zone process and apparatus

    Get PDF
    The process and apparatus for growing crystals using float zone techniques are described. A rod of crystalline materials is disposed in a cylindrical container, leaving a space between the rod and container walls. This space is filled with an encapsulant, selected to have a slightly lower melting point than the crystalline material. The rod is secured to a container end cap at one end and to a shaft at its other end. A piston slides over the rod and provides pressure to prevent loss of volatile components upon melting of the rod. Prior to melting the rod the container is first heated to melt the encapsulant, with any off-gas from this step being vented to a cavity behind the piston. The piston moves slightly forward owing to volume change upon melting of the encapsulant, and the vent passageway is closed. The container is then moved longitudinally through a heated zone to progressively melt sections of the rod as in conventional float zone processes. The float zone technique may be used in the microgravity environment of space

    Evolution of Local Microstructures (ELMS): Spatial Instabilities of Coarsening

    Get PDF
    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that / 2 1/ 3 predicted by TLS is proportional to V(sub v)(exp 1/2), whereas others suggest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team
    corecore