223 research outputs found

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water cours

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water course

    Chipping machines: disc and drum energy requirements

    Get PDF
    Air pollution and fossil fuel reserves exhaustion are increasing the importance of the biomass-derived products, in particular wood, as source of clean and renewable energy for the production of electricity or steam. In order to improve the global efficiency and the entire production chain, we have to evaluate the energetic aspects linked to the process of transformation, handling and transport of these materials. This paper reports results on a comparison between two chippers of similar size using different cutting technology: disc and drum tool respectively. During trials, fuel consumption, PTO torque and speed, processing time and weight of processed material were recorded. Power demand, fuel consumption, specific energy and productivity were computed. The machine was fed with four different feedstock types (chestnut logs, poplar logs, poplar branches, poplar sawmill residues). 15 repetitions for each combination of feedstock-tool were carried out. The results of this study show that the disc tool requires, depending on the processed material, from 12 to 18% less fuel per unit of material processed than the drum tool, and consequently, from 12 to 16% less specific energy. In particular, the highest difference between tools was found in branches processing whereas the smallest was in poplar logs. Furthermore the results of the investigation indicate, that, in testing conditions, the productivity of drum tool is higher (8%) than disc tool

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Self-calibration of the 1 MN deadweight force standard machine at INRiM

    Get PDF
    open4noThe INRiM 1 MN deadweight force standard machine (DFSM) was installed in 1995. It adopts a binary sequence of ten weights whose combinations generate forces up to 1 MN. The advantage of this system lies in the self-calibration of its weights. The procedure is based on the comparison between two forces generated by a single weight and by a group of smaller weights, nominally equal. After 25 years, a verification of the DFSM was performed. Results are within the declared CMC limits, i.e. a relative expanded uncertainty of 2 × 10-5.openPrato, A.; Mazzoleni, F.; Facello, A.; Germak, A.Prato, A.; Mazzoleni, F.; Facello, A.; Germak, A

    Theoretical insights on the influence of the experimental plan in the calibration of multicomponent force and moment transducers

    Get PDF
    In recent years, the increasing demand of multicomponent force and moment transducers led the necessity to develop specific calibration procedures. Sensitivity and exploitation terms of these transducers are usually expressed in matrix form to evaluate cross-talks between the different components. According to the seminal work of Ronald Fisher in 1926, to provide accurate results, calibrations shall be performed with different combinations of forces and moments in order to minimize the correlation between them. In this work, a theoretical investigation, based on an ideal transducer, on the influence of the experimental plan in the evaluation of exploitation matrix terms and the associated uncertainties as function of the number of measurements and the correlation between the applied forces and moments is performed. It is found that at decreasing number of measurements and increasing correlations between the applied forces and moments, uncertainties increase, while exploitation matrix terms are poorly affected by the chosen experimental plan
    corecore