249 research outputs found

    Legumes as basic ingredients in the production of dairy-free cheese alternatives: a review

    Get PDF
    Research into dairy-free alternative products, whether plant-based or cell-based, is growing fast and the food industry is facing a new challenge of creating innovative, nutritious, accessible, and natural dairy-free cheese alternatives. The market demand for these products is continuing to increase owing to more people choosing to reduce or eliminate meat and dairy products from their diet for health, environmental sustainability, and/or ethical reasons. This review investigates the current status of dairy product alternatives. Legume proteins have good technological properties and are cheap, which gives them a strong commercial potential to be used in plant-based cheese-like products. However, few legume proteins have been explored in the formulation, development, and manufacture of a fully dairy-free cheese because of their undesirable properties: heat stable anti-nutritional factors and a beany flavor. These can be alleviated by novel or traditional and economical techniques. The improvement and diversification of the formulation of legume-based cheese alternatives is strongly suggested as a low-cost step towards more sustainable food chains. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Shelf life extension of Italian mozzarella by use of calcium lactate buffered brine

    Get PDF
    Italian traditional mozzarella is a high moisture table cheese that is sold packaged in water for preserving freshness. Despite of the high foreign demand, high perishability limits export. For extending shelf life, the dairy industries have long been engaged in controlling the growth of spoilage microflora, which is the main responsible of alteration. The present paper describes the results of a study that aimed to assess if using acidified brine instead of water, the growth of these microorganisms could be delayed. A suitable brine was first developed, based on calcium lactate and lactic acid, that did not impair the sensory characteristics of the cheese. Then, the shelf-life study was carried out, and the results revealed a significant delay of the growth of total mesophilic bacteria, Pseudomonas spp. and Enterobacteriaceae. The sensory characteristics of the cheese remained within the acceptability limits until 21 days and, compared with the sample stored in water, the shelf life was extended of more than 50% Very interestingly, the experimental brine also prevented the occurrence of the blue discoloration defect, known to be caused by Pseudomonas fluorescens. Even though further investigation is needed, the results obtained can open new marketing perspectives for producers of traditional mozzarella

    Effects of milk storage temperature at the farm on the characteristics of Parmigiano Reggiano cheese: chemical composition and proteolysis.

    Get PDF
    Parmigiano Reggiano is a Protected Designation of Origin (PDO) cheese whose official production protocol provides that milk cannot be stored at less than 18 °C at the farm. The possibility of refrigerating milk at the farm is highly debated, since it should allow for the limiting of bacterial growth, thus improving the quality of the cheese. The present research aimed to study the influence of storing the milk at 9 °C on the chemical composition and proteolysis during the ripening of Parmigiano Reggiano cheese. The experimentation considered six cheese-making trials, in which both evening and morning milks were subdivided into two parts that were maintained at 9 and 20 °C. After Parmigiano Reggiano cheese-making, one of the twin wheels obtained was analyzed after 21 months of ripening. From each cheese, two different samples were taken, one from the inner zone, and the other from the outer zone. The results of the chemical analyses evidenced that milk storage at 9 °C significantly (p ≤ 0.05) influenced fat, crude protein, soluble nitrogen and peptone nitrogen contents. Nevertheless, the differences observed with respect to the cheese obtained with milk stored under standard condition were very small and should be considered within the “normal variations” of Parmigiano Reggiano chemical characteristics

    Assessment of “Sugranineteen” Table Grape Maturation Using Destructive and Auto-Fluorescence Methods

    Get PDF
    The optimal harvesting of table grapes is commonly determined based on technological and phenolic indices analyzed over the course of its maturity. The classical techniques used for these analyses are destructive, time-consuming, and work for a limited number of samples that may not represent the heterogeneity of the vineyard. This study aimed to follow the ripening season of table grapes using non-destructive tools as a rapid and accurate alternative for destructive techniques. Grape samples were collected from a Sugranineteen vineyard during the ripening season to measure the basic maturity indices via wet chemistry, and total polyphenols, anthocyanins, and flavonoids were evaluated by spectrophotometry. Fluorescent readings were collected from intact clusters with a portable optical sensor (Multiplex® 3, Force-A, France) that generates indices correlated to different maturity parameters. Results revealed strong relationships between the Multiplex® indices ANTH_RG and FERARI and the skin anthocyanin content, with R2 values equal to 0.9613 and 0.8713, respectively. The NBI_R index was also related to total anthocyanins (R2 = 0.8032), while the SFR_R index was linked to the titratable acidity (R2 = 0.6186), the sugar content (R2 = 0.7954), and to the color index of red grapes (CIRG) (R2 = 0.7835). Results demonstrated that Multiplex® 3 can be applied on intact clusters as an effective non-destructive tool for a rapid estimation of table grapes’ anthocyanin content

    Combined effect of active coating and modified atmosphere packaging on prolonging the shelf life of low-moisture Mozzarella cheese

    Get PDF
    Abstract In this work, the effect of active coating on the shelf life of low-moisture Mozzarella cheese packaged in air and modified atmosphere (MAP) was studied. The active coating was based on sodium alginate (2%, wt/vol) and potassium sorbate (1%, wt/vol). The MAP was made up of 75% CO 2 and 25% N 2 (MAP1), 25% CO 2 and 75% N 2 (MAP2), or 50% CO 2 and 50% N 2 (MAP3). The product quality decay was assessed by monitoring microbiological and sensory changes during storage at 4, 8, and 14°C. Results showed that the combination of active coating and MAP was able to improve the preservation of low-moisture Mozzarella cheese. Specifically, the shelf life increased up to 160 d for samples stored at 4°C, and 40 and 11 d for those at 8 and 14°C, respectively. A faster quality decay for untreated samples packaged in air was observed. In particular, the Pseudomonas spp. growth and the appearance of molds were responsible for product unacceptability. The combination of active coating and MAP represents a strategic solution to prolong the shelf life of low-moisture Mozzarella cheese and to ensure the safety of the product under thermal abuse conditions

    Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis

    Get PDF
    The conversion of muscle to meat in pig involves mainly proteolysis of myofibrillar proteins, which undergo notable changes since early stage of rigor mortis, even after 48 h post mortem. The tenderness of meat has been thoroughly investigated to understand the biochemical mechanisms, which influence texture and flavour development as well as the technological parameters and hence meat quality. Cytoplasmic proteolytic calcium dependent enzymes, named -and m-calpains, which act in the early stages of rigor mortis, significantly contribute to tenderization weakening myofibrils. These enzymes, however, act for fewdays because they are specifically inhibited by calpastatin and by pH lowering. However, when pH falls to about 5.0, proteolytic activity on muscle proteins is continued by longer acting lysosomal proteinase, cathepsins [3,7–9]. Post mortem proteolysis also causes relevant changes in sarcoplamic protein fraction, which represent the water soluble fraction (quantitatively about 30–35%) of meat total protein, and the involved proteins has already been identified by proteomic-based studies. Recent investigations have demonstrated that the most commonly found Lactobacillus species in dry fermented meats are able to hydrolyse myofibrillar and sarcoplasmic muscle proteins in vitro.The most abundant sarcoplasmic proteins, as mixture of basic polypeptides with a narrow spread range of molecular masses, represented an excellent model to test our analytical technique and to delineate its capabilities. In the present study, we compared 2D AUT-PAGE/SDSPAGE maps of water-soluble proteins extracted from fresh meat and from dry-cured ham, a non fermented product, from “Naples-type” salami, a microbiologically fermented product, and from “Coppa”, a typical semi-fermented product. Electrophoretically separated proteins have been identified by MALDI-ToF mass fingerprinting

    Buffalo Milk as a Source of Probiotic Functional Products

    Get PDF
    In the past two decades, consumption of food has been accruing due to its health claims which include gastrointestinal health, improved immunity, and well‐being. Currently, the dairy industry is the sector where probiotics are most widely used, especially in fermented milk, cheese, yoghurt, butter, and dairy beverages. Although, it is still necessary to face many challenges regarding their stability and functionality in food. Considering the increasing demand for healthy products, it is necessary to develop strategies that aim to increase the consumption of functional foods in order to meet probiotic usefulness criteria and the consumer market. This review aimed to promote the utilization of buffalo milk considering its probiotic effects as a functional food and natural remedy to various ailments, emphasizing the potential of innovation and the importance of milk‐based products as health promoters. The intake of probiotics plays an important role in modulating the health of the host, as a result of a balanced intestinal microbiota, reducing the risk of development of various diseases such as cancer, colitis, lactose intolerance, heart diseases, and obesity, among other disorders. However, further studies should be carried out to deepen the knowledge on the relationship between raw buffalo milk, its dairy products microbiota and consumer’s health beneficial effects, as well as to implement a strategy to increase the variety and availability of its products as a functional food in the market

    Phenols, volatiles and sensory properties of primitivo wines from the "Gioia Del Colle" PDO area

    Get PDF
    The aim of this study was to characterise the phenol, anthocyanin, volatile and sensory profiles of Primitivo wines. The wines were produced in three wineries located in the Gioia del Colle PDO (Protected Designation of Origin) area (Southern Italy - Apulia Region). The grapes came from three vineyards of different ages and were grown according to different training systems. The winemaking techniques applied also differed in some technological variables. The results obtained showed that all wines had a high alcohol content (15 to 16% v/v) and were rich in total phenols and proanthocyanidins. The anthocyanin profile was characterised by the prevalence of non-acylated forms, of which malvidin-3-O-monoglucoside accounted for 62 to 67% of the total anthocyanin, followed by the coumarate, acetate and caffeate forms. The volatile fraction was constituted mainly alcohols and esters, the latter having concentrations above the odour threshold. From a sensory point of view, all wines were judged positively, and presented high olfactory and gustatory persistence. The main odour attributes found were soft fruits, cherry and cloves
    corecore