2 research outputs found

    Automated displacement measurements on historical canvases

    Get PDF
    Abstract Background In this paper we describe a configurable system based on laser displacement sensors for the contactless acquisition of 3D and 2D shapes of near-planar objects such as the paintings. Methods The system is based on two single-point laser triangulation sensors, a planar robot and a suite of software for driving the sensors, acquiring and post-processing the collected data. As a demonstration of the developed system we monitored three artifacts with the different aims to monitor the elastic properties of the artworks and the effectiveness of support frames in compensating the micro-climate fluctuations: the "Annunciazione" Antonello da Messina, the "Paliotto di San Domenico", and the "Portiera Oddi-Montesperelli". Results In the "Annunciazione" case, the canvas response to tensioning trials was analyzed. The collected data permitted to quantify a maximum displacement of 0.9 and 1.5 mm for the tensioning tests at 1 and 2 mm, respectively. In the "Portiera" case, the displacement difference between the left and right canvas sides was (1.0 ± 0.13)%, due to the inherent anisotropy of the material and by the structure of the artifact. In the "Paliotto" case, instead, minor displacement variations of the gilt leather due to the environment were observed, due to the analysis conducted prior of the restoration. Conclusions The overall obtained results demonstrated that the system is able to provide useful data for the art conservation field, with a max inaccuracy less than 100 μm

    Three-Dimensional Assessment of Upper Limb Proprioception via a Wearable Exoskeleton

    No full text
    Proprioception—the sense of body segment’s position and movement—plays a crucial role in human motor control, integrating the sensory information necessary for the correct execution of daily life activities. Despite scientific evidence recognizes that several neurological diseases hamper proprioceptive encoding with consequent inability to correctly perform movements, proprioceptive assessment in clinical settings is still limited to standard scales. Literature on physiology of upper limb’s proprioception is mainly focused on experimental approaches involving planar setups, while the present work provides a novel paradigm for assessing proprioception during single—and multi-joint matching tasks in a three-dimensional workspace. To such extent, a six-degrees of freedom exoskeleton, ALEx-RS (Arm Light Exoskeleton Rehab Station), was used to evaluate 18 healthy subjects’ abilities in matching proprioceptive targets during combined single and multi-joint arm’s movements: shoulder abduction/adduction, shoulder flexion/extension, and elbow flexion/extension. Results provided evidence that proprioceptive abilities depend on the number of joints simultaneously involved in the task and on their anatomical location, since muscle spindles work along their preferred direction, modulating the streaming of sensory information accordingly. These findings suggest solutions for clinical sensorimotor evaluation after neurological disease, where assessing proprioceptive deficits can improve the recovery path and complement the rehabilitation outcomes
    corecore