149 research outputs found

    Structural Progression in Patients with Definite and Non-Definite Arrhythmogenic Right Ventricular Cardiomyopathy and Risk of Major Adverse Cardiac Events

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited disease characterised by early arrhythmias and structural changes. Still, there are limited echocardiography data on its structural progression. We studied structural progression and its impact on the occurrence of major adverse cardiovascular events (MACE). In this single-centre observational cohort study, structural progression was defined as the development of new major or minor imaging 2010 Task Force Criteria during follow-up. Of 101 patients, a definite diagnosis of ARVC was made in 51 patients, while non-definite ‘early’ disease was diagnosed in 50 patients. During 4 years of follow-up (IQR: 2–6), 23 (45%) patients with a definite diagnosis developed structural progression while only 1 patient in the non-definite (early) group gained minor imaging Task Force Criteria. Male gender was strongly associated with structural progression (62% of males progressed structurally, while 88% of females remained stable). Patients with structural progression were at higher risk of MACE (64% of patients with MACE had structural progression). Therefore, the rate of structural progression is an essential factor to be considered in ARVC studies

    Familial atrial fibrillation mutation M1875T-SCN5A increases early sodium current and dampens the effect of flecainide

    Get PDF
    Aims Atrial fibrillation (AF) is the most common cardiac arrhythmia. Pathogenic variants in genes encoding ion channels are associated with familial AF. The point mutation M1875T in the SCN5A gene, which encodes the α-subunit of the cardiac sodium channel Nav1.5, has been associated with increased atrial excitability and familial AF in patients. Methods and results We designed a new murine model carrying the Scn5a-M1875T mutation enabling us to study the effects of the Nav1.5 mutation in detail in vivo and in vitro using patch clamp and microelectrode recording of atrial cardiomyocytes, optical mapping, electrocardiogram, echocardiography, gravimetry, histology, and biochemistry. Atrial cardiomyocytes from newly generated adult Scn5a-M1875T+/− mice showed a selective increase in the early (peak) cardiac sodium current, larger action potential amplitude, and a faster peak upstroke velocity. Conduction slowing caused by the sodium channel blocker flecainide was less pronounced in Scn5a-M1875T+/− compared to wildtype atria. Overt hypertrophy or heart failure in Scn5a-M1875T+/− mice could be excluded. Conclusion The Scn5a-M1875T point mutation causes gain-of-function of the cardiac sodium channel. Our results suggest increased atrial peak sodium current as a potential trigger for increased atrial excitability

    An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial fibrillation from other concomitant cardiovascular conditions

    Full text link
    Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n=933) and validated in the remaining patients (n=552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation

    Heart Failure, Female Sex, and Atrial Fibrillation Are the Main Drivers of Human Atrial Cardiomyopathy: Results From the CATCH ME Consortium

    Full text link
    Background: Atrial cardiomyopathy (atCM) is an emerging prognostic factor in cardiovascular disease. Fibrotic remodeling, cardiomyocyte hypertrophy, and capillary density are hallmarks of atCM. The contribution of etiological factors and atrial fibrillation (AF) to the development of differential atCM phenotypes has not been quantified. This study aimed to evaluate the association between histological features of atCM and the clinical phenotype. Methods and results: We examined left atrial (LA, n=95) and right atrial (RA, n=76) appendages from a European cohort of patients undergoing cardiac surgery. Quantification of histological atCM features was performed following wheat germ agglutinin/CD31/vimentin staining. The contributions of AF, heart failure, sex, and age to histological characteristics were determined with multiple linear regression models. Persistent AF was associated with increased endomysial fibrosis (LA: +1.13±0.47 μm, P=0.038; RA: +0.94±0.38 μm, P=0.041), whereas total extracellular matrix content was not. Men had larger cardiomyocytes (LA: +1.92±0.72 μm, P<0.001), while women had more endomysial fibrosis (LA: +0.99±0.56 μm, P=0.003). Patients with heart failure showed more endomysial fibrosis (LA: +1.85±0.48 μm, P<0.001) and extracellular matrix content (LA: +3.07±1.29%, P=0.016), and a higher capillary density (LA: +0.13±0.06, P=0.007) and size (LA: +0.46±0.22 μm, P=0.044). Fuzzy k-means clustering of histological features identified 2 subtypes of atCM: 1 characterized by enhanced endomysial fibrosis (LA: +3.17 μm, P<0.001; RA: +2.86 μm, P<0.001), extracellular matrix content (LA: +3.53%, P<0.001; RA: +6.40%, P<0.001) and fibroblast density (LA: +4.38%, P<0.001), and 1 characterized by cardiomyocyte hypertrophy (LA: +1.16 μm, P=0.008; RA: +2.58 μm, P<0.001). Patients with fibrotic atCM were more frequently female (LA: odds ratio [OR], 1.33, P=0.002; RA: OR, 1.54, P=0.004), with persistent AF (LA: OR, 1.22, P=0.036) or heart failure (LA: OR, 1.62, P<0.001). Hypertrophic features were more common in men (LA: OR=1.33, P=0.002; RA: OR, 1.54, P=0.004). Conclusions: Fibrotic atCM is associated with female sex, persistent AF, and heart failure, while hypertrophic features are more common in men

    An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial fibrillation from other concomitant cardiovascular conditions

    Get PDF
    Abstract Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n = 933) and validated in the remaining patients (n = 552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation

    A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    The clinically established proarrhythmic effect of bradycardia and antiarrhythmic effect of lidocaine (10 μM) were reproduced in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced over a range (80–180 ms) of baseline cycle lengths (BCLs). Action potential durations (at 90% repolarization, APD90s), transmural conduction times and ventricular effective refractory periods (VERPs) were then determined from monophasic action potential records obtained during a programmed electrical stimulation procedure in which extrasystolic stimuli were interposed following regular stimuli at successively decreasing coupling intervals. A novel graphical analysis of epicardial and endocardial, local and transmural relationships between APD90, corrected for transmural conduction time where appropriate, and VERP yielded predictions in precise agreement with the arrhythmogenic findings obtained over the entire range of BCLs studied. Thus, in normokalaemic (5.2 mM K+) hearts a statistical analysis confirmed that all four relationships were described by straight lines of gradients not significantly (P > 0.05) different from unity that passed through the origin and thus subtended constant critical angles, θ with the abscissa (45.8° ± 0.9°, 46.6° ± 0.5°, 47.6° ± 0.5° and 44.9° ± 0.8°, respectively). Hypokalaemia shifted all points to the left of these reference lines, significantly (P < 0.05) increasing θ at BCLs of 80–120 ms where arrhythmic activity was not observed (∼63°, ∼54°, ∼55° and ∼58°, respectively) and further significantly (P < 0.05) increasing θ at BCLs of 140–180 ms where arrhythmic activity was observed (∼68°, ∼60°, ∼61° and ∼65°, respectively). In contrast, the antiarrhythmic effect of lidocaine treatment was accompanied by a significant (P < 0.05) disruption of this linear relationship and decreases in θ in both normokalaemic (∼40°, ∼33°, ∼39° and ∼41°, respectively) and hypokalaemic (∼40°, ∼44°, ∼50° and ∼48°, respectively) hearts. This extended a previous approach that had correlated alterations in transmural repolarization gradients with arrhythmogenicity in murine models of the congenital long QT syndrome type 3 and hypokalaemia at a single BCL. Thus, the analysis in terms of APD90 and VERP provided a more sensitive indication of the effect of lidocaine than one only considering transmural repolarization gradients and may be particularly applicable in physiological and pharmacological situations in which these parameters diverge
    corecore