4,149 research outputs found

    Some remarks on the observational constraints on the self-interacting scalar field model for dark energy

    Full text link
    The dark energy component of the cosmic budget is represented by a self-interacting scalar field. The violation of the null energy condition is allowed. Hence, such component can also represent a phantom fluid. The model is tested using supernova type Ia and matter power spectrum data. The supernova test leads to preferred values for configurations representing the phantom fluid. The matter power spectrum constraints for the dark energy equation of state parameter are highly degenerated. In both cases, values for the equation of state parameter corresponding to the phantom fluid are highly admitted if no particular prior is used.Comment: Latex file, 12 pages, 12 figures in eps forma

    Scalar models for the unification of the dark sector

    Full text link
    We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity.Comment: Latex file, 8 pages, 3 figures in eps format. To appear in the proceedings of the CosmoSul conference, held in Rio de Janeiro, Brazil, 01-05 august of 201

    Cosmology and stellar equilibrium using Newtonian hydrodynamics with general relativistic pressure

    Full text link
    We revisit the analysis made by Hwang and Noh [JCAP 1310 (2013)] aiming the construction of a Newtonian set of equations incorporating pressure effects typical of the General Relativity theory. We explicitly derive the Hwang-Noh equations, comparing them with similar computations found in the literature. Then, we investigate i)i) the cosmological expansion, ii)ii) linear cosmological perturbations theory and iii)iii) stellar equilibrium by using the new set of equations and comparing the results with those coming from the usual Newtonian theory, from the Neo-Newtonian theory and from the General Relativity theory. We show that the predictions for the background evolution of the Universe are deeply changed with respect to the General Relativity theory: the acceleration of the Universe is achieved with positive pressure. On the other hand, the behaviour of small cosmological perturbations reproduces the one found in the relativistic context, even if only at small scales. We argue that this last result may open new possibilities for numerical simulations for structure formation in the Universe. Finally, the properties of neutron stars are qualitatively reproduced by Hwang-Noh equations, but the upper mass limit is at least one order of magnitude higher than the one obtained in General Relativity.Comment: 15 pages, 4 figures. Section 2 greatly extended with a post-Newtonian analysis. Final results strengthe

    Bouncing solutions in Rastall's theory with a barotropic fluid

    Full text link
    Rastall's theory is a modification of Einstein's theory of gravity where the covariant divergence of the stress-energy tensor is no more vanishing, but proportional to the gradient of the Ricci scalar. The motivation of this theory is to investigate a possible non-minimal coupling of the matter fields to geometry which, being proportional to the curvature scalar, may represent an effective description of quantum gravity effects. Non-conservation of the stress-energy tensor, via Bianchi identities, implies new field equations which have been recently used in a cosmological context, leading to some interesting results. In this paper we adopt Rastall's theory to reproduce some features of the effective Friedmann's equation emerging from loop quantum cosmology. We determine a class of bouncing cosmological solutions and comment about the possibility of employing these models as effective descriptions of the full quantum theory.Comment: Latex file, 14 pages, 1 figure in eps format. Typos corrected, one reference added. Published versio

    Magnetically-induced electric polarization in an organo-metallic magnet

    Full text link
    The coupling between magnetic order and ferroelectricity has been under intense investigation in a wide range of transition-metal oxides. The strongest coupling is obtained in so-called magnetically-induced multiferroics where ferroelectricity arises directly from magnetic order that breaks inversion symmetry. However, it has been difficult to find non-oxide based materials in which these effects occur. Here we present a study of copper dimethyl sulfoxide dichloride (CDC), an organo-metallic quantum magnet containing S=1/2S = 1/2 Cu spins, in which electric polarization arises from non-collinear magnetic order. We show that the electric polarization can be switched in a stunning hysteretic fashion. Because the magnetic order in CDC is mediated by large organic molecules, our study shows that magnetoelectric interactions can exist in this important class of materials, opening the road to designing magnetoelectrics and multiferroics using large molecules as building blocks. Further, we demonstrate that CDC undergoes a magnetoelectric quantum phase transition where both ferroelectric and magnetic order emerge simultaneously as a function of magnetic field at very low temperatures
    • …
    corecore