4,548 research outputs found
Non-linear and quantum optics of a type II OPO containing a birefringent element Part 1: Classical operation
We describe theoretically the main characteristics of the steady state regime
of a type II Optical Parametric Oscillator (OPO) containing a birefringent
plate. In such a device the signal and idler waves are at the same time
linearly coupled by the plate and nonlinearly coupled by the
crystal. This mixed coupling allows, in some well-defined range of the control
parameters, a frequency degenerate operation as well as phase locking between
the signal and idler modes. We describe here a complete model taking into
account all possible effects in the system, \emph{i.e.} arbitrary rotation of
the waveplate, non perfect phase matching, ring and linear cavities. This model
is able to explain the detailed features of the experiments performed with this
system.Comment: To be published in EPJ
Quantum Monte Carlo study of ring-shaped polariton parametric luminescence in a semiconductor microcavity
We present a quantum Monte Carlo study of the quantum correlations in the
parametric luminescence from semiconductor microcavities in the strong
exciton-photon coupling regime. As already demonstrated in recent experiments,
a ring-shaped emission is obtained by applying two identical pump beams with
opposite in-plane wavevectors, providing symmetrical signal and idler beams
with opposite in-plane wavevectors on the ring. We study the squeezing of the
signal-idler difference noise across the parametric instability threshold,
accounting for the radiative and non-radiative losses, multiple scattering and
static disorder. We compare the results of the complete multimode Monte Carlo
simulations with a simplified linearized quantum Langevin analytical model
Free evolution of an incoherent mixture of states: a quantum mechanical approach to the van Cittert-Zernike theorem
We study the time evolution of an incoherent mixture of quantum states and demonstrate, in very simple terms, a quantum mechanical equivalent of van Cittert–Zernike theorem, which can be easily explained to Quantum Physics students with a basic knowledge of the density matrix theory. Finally, we exemplify this result by applying it to the quantitative analysis of the coherence of a beam of particles in atomic collisions.Fil: Fabre, Ignacio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Navarrete, Francisco Oscar. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sarkadi, L.. Hungarian Academy of Sciences; HungríaFil: Barrachina Tejada, Raul Oscar. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Non-linear and quantum optics of a type II OPO containing a birefringent element Part 2 : bright entangled beams generation
We describe theoretically the quantum properties of atype-II Optical
Parametric Oscillator containing a birefringent plate which induces a linear
coupling between the orthogonally polarized signal and idler beams and results
in phase locking between these two beams. As in a classical OPO, the signal and
idler waves show large quantum correlations which can be measured
experimentally due to the phase locking between the two beams. We study the
influence of the waveplate on the various criteria characterizing quantum
correlations. We show in particular that the quantum correlations can be
maximized by using optimized quadratures.Comment: to be published in Eur. Phys. J.
Continuous-wave phase-sensitive parametric image amplification
We study experimentally parametric amplification in the continuous regime
using a transverse-degenerate type-II Optical Parametric Oscillator operated
below threshold. We demonstrate that this device is able to amplify either in
the phase insensitive or phase sensitive way first a single mode beam, then a
multimode image. Furthermore the total intensities of the amplified image
projected on the signal and idler polarizations are shown to be correlated at
the quantum level.Comment: 14 pages, 7 figures, submitted to Journal of Modern Optics, Special
Issue on Quantum Imagin
Spatio-temporal development of the long and short-wave vortex-pair instabilities
International audienceWe consider the spatio-temporal development of the long-wave and short-wave instabilities in a pair of counter-rotating vortices in the presence of a uniform axial advection velocity. The stability properties depend upon the aspect ratio a/b of the vortex pair, where a is the core radius of the vortices and b their separation, and upon W0/U0 the ratio between the self-induced velocity of the pair and the axial advection velocity. For sufficiently small W0/U0, the instabilities are convective, but an increase of W0/U0 may lead to an absolute instability. Near the absolute instability threshold, spatial growth rates are larger than those predicted by temporal stability theory. Considering aeronautical applications, it is shown that instabilities of the type considered in this communication cannot become absolute in farfield wakes of high aspect ratio wings. © 2000 American Institute of Physics
A quantum study of multi-bit phase coding for optical storage
We propose a scheme which encodes information in both the longitudinal and
spatial transverse phases of a continuous-wave optical beam. A split
detector-based interferometric scheme is then introduced to optimally detect
both encoded phase signals. In contrast to present-day optical storage devices,
our phase coding scheme has an information storage capacity which scales with
the power of the read-out optical beam. We analyse the maximum number of
encoding possibilities at the shot noise limit. In addition, we show that using
squeezed light, the shot noise limit can be overcome and the number of encoding
possibilities increased. We discuss a possible application of our phase coding
scheme for increasing the capacities of optical storage devices.Comment: 8 pages, 7 figures (Please email author for a PDF file if the
manuscript does not turn out properly
Entanglement measurement of the quadrature components without the homodyne detection in the spatially multi-mode far-field
We consider the measuring procedure that in principle allows to avoid the
homodyne detection for the simultaneous selection of both quadrature components
in the far-field. The scheme is based on the use of the coherent sources of the
non-classical light. The possibilities of the procedure are illustrated on the
basis of the use of pixellised sources, where the phase-locked sub-Poissonian
lasers or the degenerate optical parametric oscillator generating above
threshold are chosen as the pixels. The theory of the pixellised source of the
spatio-temporal squeezed light is elaborated as a part of this investigation.Comment: 11 pages, 5 figures, RevTeX4. Submitted to Phys. Rev.
Ultra-low threshold CW Triply Resonant OPO in the near infrared using Periodically Poled Lithium Niobate
We have operated a CW triply resonant OPO using a PPLN crystal pumped by a
Nd:YAG laser at 1.06 micron and generating signal and idler modes in the 2-2.3
micron range. The OPO was operated stably in single mode operation over large
periods of time with a pump threshold as low as 500 microwatts.Comment: 7 pages, 5 figures, submitted to JEOS
- …