19 research outputs found

    Site‐Directed Mutagenesis by Polymerase Chain Reaction

    Get PDF
    Since genomic data are widely available, many strategies have been implemented to reveal the function of specific nucleotides or amino acids in promoter regions or proteins, respectively. One of the methods most commonly used to determine the impact of mutations is the site‐directed mutagenesis using the polymerase chain reaction (PCR). There are different published protocols to develop single or multiple site‐directed mutagenesis. In this chapter, we reviewed the enzymes commonly used in site‐directed mutagenesis, the methods for simple and multiple site‐directed mutagenesis in large constructs, mediated by insertion of restriction sites. Other methods reviewed include high‐throughput site‐directed mutagenesis using oligonucleotides synthesized on DNA chips, and those based on multi‐site‐directed mutagenesis, based on recombination. Software tools to design site‐directed mutagenesis primers are also presented

    Drug Resistance in Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) remains to be a serious health problem worldwide. There is an increased transmission of Mycobacterium tuberculosis strains with drug resistance, hence complicating TB control. The deciphering of the M. tuberculosis genome, together with the implementation of new molecular biology tools, has allowed the identification of changes in nucleic acid sequences with a functional impact. These mutations have become important in the design of early‐diagnostic kits to identify the resistance profile of M. tuberculosis. Since the conventional methods to determine the identity of M. tuberculosis strains based in cultures are laborious, time‐consuming and performed by specialized technicians, the result is generated until 4 months after receiving the samples. During this time, patients with TB are not adequately treated, and resistant strains may be transmitted to the rest of the population. In this chapter, we describe the most relevant mutations in genes associated with drug resistance in M. tuberculosis, the analysis of gene expression to identify new markers of drug resistance strains, and the development of new antituberculosis drugs against drug‐resistant strains

    Selenite downregulates STAT3 expression and provokes lymphocytosis in the liver of chronically exposed Syrian golden hamsters

    Get PDF
    Arsenic is considered a worldwide pollutant that can be present in drinking water. Arsenic exposure is associated with various diseases, including cancer. Antioxidants as selenite and α-tocopherol-succinate have been shown to modulate arsenic toxic effects. Since changes in STAT3 and PSMD10 gene expression have been associated with carcinogenesis, the aim of this study was to evaluate the effect of arsenic exposure and co-treatments with selenite or α-tocopherol-succinate on the expression of these genes, in the livers of chronically exposed Syrian golden hamsters. Animals were divided into six groups: (i) control, (ii) chronically treated with 100 ppm arsenic, (iii) treated with 6 ppm α-tocopherol-succinate (α-TOS), (iv) treated with 8.5 ppm selenite, (v) treated with arsenic + α-TOS, and (vi) treated with arsenic + selenite. Urine samples and livers were collected after 20 weeks of continuous exposure. The urine samples were analyzed for arsenic species by atomic absorption spectrophotometry, and real-time RT-qPCR analysis was performed for gene expression evaluation. A reduction in STAT3 expression was observed in the selenite-treated group. No differences in PSMD10 expression were found among groups. Histopathological analysis revealed hepatic lymphocytosis in selenite-treated animals. As a conclusion, long-term exposure to arsenic does not significantly alter the expression of STAT3 and PSMD10 oncogenes in the livers of hamsters; however, selenite down-regulates STAT3 expression and provokes lymphocytosis

    Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    Get PDF
    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons

    Aquaporine-5 and epithelial sodium channel β-subunit gene expression in gastric aspirates in human term newborns

    No full text
    Both transient tachypnea of the newborn and neonatal respiratory distress syndrome have been associated with changes in gene expression of aquaporine-5 (AQP5) and the β subunit of the epithelial sodium channel (β-ENaC) in the respiratory epithelium. Gastric aspirate (GA) obtained immediately after birth could represent a new source for gene expression analysis for these respiratory diseases. The aims of this study were to determine the feasibility of estimating AQP5 and β-ENaC gene expression in exfoliated respiratory epithelial cells from the GA of term neonates, and to compare the values with those found in scraped nasal epithelial cells, previously validated as a surrogate for distal lung epithelium in terms of ionic channel activity. The study had a cross-sectional, proof-of-concept design. Immediately after birth, we obtained GA and nasal mucous membrane scrapings from term newborns, in which total RNA and RT-qPCR assays for AQP5 and β-ENaC genes were performed. AQP5 gene expression was greater in GA than in nasal scrapings, and β-ENaC gene expression was at least as great in GA as that obtained in nasal scrapings. Amplification of samples from the two sites was comparable. AQP5 gene expression was greater in babies delivered by cesarean section; β-ENaC gene expression was greater in babies delivered vaginally, but only in the nasal samples. Quantitation of the expression of AQP5 and of β-ENaC genes in GA, obtained shortly after birth from term newborns is feasible. If confirmed in preterm neonates, this approach could aid in the differential diagnosis of neonatal respiratory diseases

    Anti-Cancer Activity of Maize Bioactive Peptides

    No full text
    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derivative food products has been associated with a reduced risk of various types of cancer. The main biomolecules in cereals include proteins, peptides, and amino acids, all of which are present in different quantities within the grain. Some of these peptides possess nutraceutical properties and exert biological effects that promote health and prevent cancer. In this review, we report the current status and advances in knowledge regarding the bioactive properties of maize peptides, such as antioxidant, antihypertensive, hepatoprotective, and anti-tumor activities. We also highlight the potential biological mechanisms through which maize bioactive peptides exert anti-cancer activity. Finally, we analyze and emphasize the potential applications of maize peptides

    Antioxidant Activity of Zein Hydrolysates from Zea Species and Their Cytotoxic Effects in a Hepatic Cell Culture

    No full text
    In recent years, food proteins with bioactivity have been studied for cancer treatment. Zein peptides have shown an important set of bioactivities. This work compares the cytotoxic activity of zein hydrolyzed, extracted from four Zea species: teosinte, native, hybrid, and transgenic (Teo, Nat, Hyb, and HT) in a hepatic cell culture. Zein fraction was extracted, quantified, and hydrolyzed. Antioxidant capacity and cytotoxicity assays were performed on HepG2 cells. The levels of expression of caspase 3, 8, and 9 were evaluated in zein-treated cell cultures. Zea parviglumis showed the highest zein content (46.0 mg/g) and antioxidant activity (673.40 TE/g) out of all native zeins. Peptides from Hyb and HT showed high antioxidant activity compared to their native counterparts (1055.45 and 724.32 TE/g, respectively). Cytotoxic activity was observed in the cell culture using peptides of the four Zea species; Teo and Nat (IC50: 1781.63 and 1546.23 ng/mL) had no significant difference between them but showed more cytotoxic activity than Hyb and HT (IC50: 1252.25 and 1155.56 ng/mL). Increased expression of caspase 3 was observed in the peptide-treated HepG2 cells (at least two-fold more with respect to the control sample). These data indicate the potential for zein peptides to prevent or treat cancer, possibly by apoptosis induction

    In Silico Analysis and In Vitro Characterization of the Bioactive Profile of Three Novel Peptides Identified from 19 kDa alpha-Zein Sequences of Maize

    No full text
    In this study, we characterized three novel peptides derived from the 19 kDa alpha-zein, and determined their bioactive profile in vitro and developed a structural model in silico. The peptides, 19ZP1, 19ZP2 and 19ZP3, formed alpha-helical structures and had positive and negative electrostatic potential surfaces (range of -1 to +1). According to the in silico algorithms, the peptides displayed low probabilities for cytotoxicity (<= 0.05%), cell penetration (10-33%) and antioxidant activities (9-12.5%). Instead, they displayed a 40% probability for angiotensin-converting enzyme (ACE) inhibitory activity. For in vitro characterization, peptides were synthesized by solid phase synthesis and tested accordingly. We assumed alpha-helical structures for 19ZP1 and 19ZP2 under hydrophobic conditions. The peptides displayed antioxidant activity and ACE-inhibitory activity, with 19ZP1 being the most active. Our results highlight that the 19 kDa alpha-zein sequences could be explored as a source of bioactive peptides, and indicate that in silico approaches are useful to predict peptide bioactivities, but more structural analysis is necessary to obtain more accurate data

    Selenite restores Pax6 expression in neuronal cells of chronically arsenic-exposed Golden Syrian hamsters

    No full text
    Arsenic is a worldwide environmental pollutant that generates public health concerns. Various types of cancers and other diseases, including neurological disorders, have been associated with human consumption of arsenic in drinking water. At the molecular level, arsenic and its metabolites have the capacity to provoke genome instability, causing altered expression of genes. One such target of arsenic is the Pax6 gene that encodes a transcription factor in neuronal cells. The aim of this study was to evaluate the effect of two antioxidants, α-tocopheryl succinate (α-TOS) and sodium selenite, on Pax6 gene expression levels in the forebrain and cerebellum of Golden Syrian hamsters chronically exposed to arsenic in drinking water. Animals were divided into six groups. Using quantitative real-time reverse transcriptase (RT)-PCR analysis, we confirmed that arsenic downregulates Pax6 expression in nervous tissues by 53 ± 21% and 32 ± 7% in the forebrain and cerebellum, respectively. In the presence of arsenic, treatment with α-TOS did not modify Pax6 expression in nervous tissues; however, sodium selenite completely restored Pax6 expression in the arsenic-exposed hamster forebrain, but not the cerebellum. Although our results suggest the use of selenite to restore the expression of a neuronal gene in arsenic-exposed animals, its use and efficacy in the human population require further studies
    corecore