25 research outputs found

    Simulation Environment for Object Manipulation with Soft Robots in Shared Autonomy

    Get PDF
    The robots of today have grown to be of much more significant use than their predecessors. Robots are now being used in industries outside of the factory setting which can be seen primarily in the medical, transportation, and social fields. With robots taking on all of these new roles within our society, the establishment of robust human-robot collaboration is crucial in order for robots to be able to successfully complete desired tasks without becoming a hinderance to nearby humans. We explored this concept by implementing a shared-autonomy algorithm named MBSA (Motion Based Smart Assistance) to a soft robot simulation and testing out its performance against an object manipulation task. MBSA works such that it takes human user input and measures the distance to a desired target, such as a block, from the robot’s end-effector and applies a force in the direction of the target to the robot if it’s not moving towards the target. The soft robot that we modeled in the simulation is a robot that was being designed by other members within the CHARM lab termed the vine robot. This soft robot was capable of stretching and shrinking itself in size, moving around in a bendy, ‘snake-like’ manner, and had a gripper at the end of it that acted as an end-effector. We used Unity as the 3D-environment software to develop our simulation due to Unity’s reliable physics engine and its powerful inverse kinematics toolbox. In conclusion, MBSA was able to successfully establish shared-autonomy within the vine robot albeit with some issues regarding obstacle avoidance. However, this algorithm shows great promise for future work to be done within this subsection of human-robot interactions

    Shared-Control Teleoperation Paradigms on a Soft Growing Robot Manipulator

    Full text link
    Semi-autonomous telerobotic systems allow both humans and robots to exploit their strengths, while enabling personalized execution of a task. However, for new soft robots with degrees of freedom dissimilar to those of human operators, it is unknown how the control of a task should be divided between the human and robot. This work presents a set of interaction paradigms between a human and a soft growing robot manipulator, and demonstrates them in both real and simulated scenarios. The robot can grow and retract by eversion and inversion of its tubular body, a property we exploit to implement interaction paradigms. We implemented and tested six different paradigms of human-robot interaction, beginning with full teleoperation and gradually adding automation to various aspects of the task execution. All paradigms were demonstrated by two expert and two naive operators. Results show that humans and the soft robot manipulator can split control along degrees of freedom while acting simultaneously. In the simple pick-and-place task studied in this work, performance improves as the control is gradually given to the robot, because the robot can correct certain human errors. However, human engagement and enjoyment may be maximized when the task is at least partially shared. Finally, when the human operator is assisted by haptic feedback based on soft robot position errors, we observed that the improvement in performance is highly dependent on the expertise of the human operator.Comment: 15 pages, 14 figure

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Online adaptive assistance control in robot-based neurorehabilitation therapy

    No full text
    Repetitive and task specific robot-based rehabilitation has been proved to be effective for motor recovery over time. During a therapy, the task should improve subject's impaired movements, but also enhance their efforts for a more effective recovery. This requires an accurate tuning of the task difficulty, which should be tailored directly to the patient. In this work, we propose a system for real-time assistance adaptation based on online performance evaluation for post-stroke subjects. In particular, the aim of the system is to implement the 'assist-as-needed' paradigm based on actual patients' motor skills during a therapy session with an active upper-limb robotic exoskeleton. The strength of the work is to propose a real-time algorithm for the assistance tuning based on an 'assistance-performance' relationship. Such a relationship is based on experimental measurements, and allows the algorithm to compute a straightforward calculation of the assistance required. Finally, an assessment phase will show how the system provides assistance based on the difficulties experienced from the subjects, also facilitating their adaptation during the task

    Look out before polypectomy in patients with diverticular disease – a case of a large, inverted diverticulum of the colon resembling a pedunculated polyp

    No full text
    Diverticular disease of the colon may be responsible for abdominal symptoms requiring colonoscopy, which may reveal the presence of concomitant polyps. A polyp found during colonoscopy in patients with colonic diverticular disease may be removed by endoscopic polypectomy with electrosurgical snare, a procedure associated with an incidence of perforation of less than 0.05%. The risk of such a complication may be higher in the event of an inverted colonic diverticulum, which may be misinterpreted as a polypoid lesion at colonoscopy. To date, fewer than 20 cases of inverted colonic diverticula, diagnosed at colonoscopy or following air contrast barium enema, have been reported in the literature. The present report describes a 68-year-old woman who underwent a screening colonoscopy, which revealed a voluminous pedunculated polyp that was recognized to be an inverted giant colonic diverticulum before endoscopic polypectomy

    RELIVE: A Markerless Assistant for CPR Training

    No full text
    Cardiopulmonary resuscitation (CPR) is a first-aid key survival technique used to stimulate breathing and keep blood flowing to the heart. Its effective administration can significantly increase the chances of survival in victims of cardiac arrest. In this paper, we propose a markerless system for quality CPR training based on RGB-D (RGB + Depth) sensors, called RELIVE. Then, we report the results of a series of experimental tests conducted to evaluate RELIVE tracking performance. The proposed system is able to accurately track the 3-D position of the hands performing CPR by means of RGB-D sensors to estimate the chest compression rate and depth, providing a real-time visual/audio feedback about the rescuer's performance. Finally, the system usability has been assessed by both healthcare professionals and lay people
    corecore