19 research outputs found

    Field trip to the Ischia resurgent caldera, a journey across an active volcano in the Gulf of Naples

    Get PDF
    Ischia is one of the most impressive examples of post-caldera resurgence in the world, with its almost 1,000 m of uplift in less than 30 ka. This three-days field trip will lead the participants through the geological and volcanological history of the island, illustrating the volcanic and related hazardous phenomena threatening about 50,000 inhabitants. Effusive and explosive eruptions, catastrophic earthquakes and huge debris-avalanches struck the island that, since Neolithic times, experienced a complex history of alternating human colonization and natural disasters. The field trip consists of three routes: 1) the circumnavigation of the island, aimed to outline its main volcanological, geomorphological and tectonic features and to observe the oldest volcanic rocks exposed, stimulating discussions about coastal evolution and the relationships between volcanism, volcano-tectonism and slope instability; 2) an onland excursion on peculiar aspects of the products related to Ischia more recent period of volcanic activity; 3) a route focusing on the Mt. Epomeo Green Tuff caldera forming eruptions (55-60 ka), encouraging a discussion on the dynamics of the intracalderic resurgence and the geomorphological evolution of the Mt. Epomeo slopes, with ongoing Mass Rock Creep (MRC) processes culminating in rockavalanche, debris-avalanche and lahar deposits

    SCIENZAPERTA: EARTH SCIENCE FOR EVERYONE... FINALLY IN MILAN!

    Get PDF
    ScienzAperta is an outreach science venue that the Istituto Nazionale di Geofisica e Vulcanologia started in 2011 as the spring of science: the doors of the headquarters of science were finally opened to public. A number of events, conferences, seminars, guided tours through the Institute and its laboratories are every year offered to general public. The venue is held in most of the cities where the Institute is located, priority to high seismic and/or volcanic risk regions. On May 2014 we held ScienzAperta for the first time in Milano and open up the doors to schools specifically dealing mostly with seismic hazard in a region where general public not necessarily think it might We offered students conferences, seminars and educational activities to highlight the fun of science and jet raise awareness on proper behaviours in case of earthquake shaking. We asked students and teachers, from elementary to high schools, to fill in a questionnaire that we use to evaluate the appreciation the venue had. One hundred years after Giuseppe Mercalli’s death we could not forget to celebrate his science the city where he was born.UnpublishedMilano3T. Pericolosità sismica e contributo alla definizione del rischiorestricte

    The real-time multiparametric network of Campi Flegrei and Vesuvius

    Get PDF
    Volcanic processes operate over a wide range of time scale that requires different instruments and techniques to be monitored. The best approach to survey a volcanic unrest is to jointly monitor all the geophysical quantities that could vary before an eruption. The monitoring techniques are sometimes peculiar for each volcano, which has its own behavior. The simultaneous investigation of all the geophysical and geochemical parameters improves the sensibility and the understanding of any variation in the volcanic system. The Osservatorio Vesuviano is the INGV division charged of the Campi Flegrei and Vesuvius monitoring, two of the highest risk volcanic complexes in the world due to the large number of people living on or close to them. Each of them have peculiarities that increase the monitoring challenge: Campi Flegrei has high anthropic noise due to people living within its numerous craters; Vesuvius has a sharp topography that complicates the data transmission and analysis. The real time monitoring of the two areas involves several geophysical fields and the data are transmitted by a wide data-communication wired or radio infrastructure to the Monitoring Centre of Osservatorio Vesuviano: - The seismic network counts of 20 station sites in Campi Flegrei and 23 in Vesuvius equipped with velocimetric, accelerometric and infrasonic sensors. Some of them are borehole stations. - The GPS network counts of 25 stations operating at Campi Flegrei caldera and 9 stations at Vesuvius volcano. All the procedures for remote stations managing (raw data downloading, data quality control and data processing) take place automatically and the computed data are shown in the Monitoring Centre. - The mareographic network counts of 4 stations in the Campi Flegrei caldera coast and 3 close to the Vesuvius that transmit to the Monitoring Centre where the data are elaborated. - The tiltmetric network consist of 10 stations distributed around Pozzuoli harbor, the area of maximum ground uplift of Campi Flegrei, evidenced since 2005, and 7 stations distributed around the Vesuvius crater. Each tiltmetric station is also equipped with a temperature and magnetic sensor. The signals recorded are sent to the Monitoring Centre. - The 4 marine multiparametric stations installed in the Pozzuoli gulf send accelerometric, broad band, hydrophonic and GPS data to the Monitoring Centre. - The geochemical network counts of 4 multiparametric stations in the fumarolic areas of Campi Flegrei and 2 stations in the Vesuvius crater (rim and bottom) with data transmission to the Monitoring Centre. They collect soil CO2 flux, temperature gradient and environmental and meteorological parameters and transmit them directly to the Monitoring Centre. - The permanent thermal infrared surveillance network (TIRNet) is composed of 6 stations distributed among Campi Flegrei and Vesuvius. The stations acquire IR scenes at night-time of highly diffuse degassing areas. IR data are processed by an automated system of IR analysis and the temperatures values are sent to the Monitoring CentrePublishedVienna, Austria1IT. Reti di monitoraggio e sorveglianz

    Processing Thermal Infrared Imagery Time-Series from Volcano Permanent Ground-Based Monitoring Network. Latest Methodological Improvements to Characterize Surface Temperatures Behavior of Thermal Anomaly Areas

    No full text
    In this technical paper, the state-of-art of automated procedures to process thermal infrared (TIR) scenes acquired by a permanent ground-based surveillance system, is discussed. TIR scenes regard diffuse degassing areas at Campi Flegrei and Vesuvio in the Neapolitan volcanic district (Italy). The processing system was developed in-house by using the flexible and fast processing Matlab© environment. The multi-step procedure, starting from raw infrared (IR) frames, generates a final product consisting mainly of de-seasoned temperatures and heat fluxes time-series as well as maps of yearly rates of temperature change of the IR frames. Accurate descriptions of all operational phases and of the procedures of analysis are illustrated; a Matlab© code (Natick, Massachusetts, U.S.A.) is provided as supplementary material. This product is ordinarily addressed to study volcanic dynamics and improve the forecasting of the volcanic activity. Nevertheless, it can be a useful tool to investigate the surface temperature field of any areas subjected to thermal anomalies, both of natural and anthropic origin

    The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    No full text
    Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR) surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano

    Field trip to the Ischia resurgent caldera, a journey across an active volcano in the Gulf of Naples

    Get PDF
    schia is one of the most impressive examples of post-caldera resurgence in the world, with its almost 1,000 m of uplift in less than 30 ka. This three-days field trip will lead the participants through the geological and volcanological history of the island, illustrating the volcanic and related hazardous phenomena threatening about 50,000 inhabitants. Effusive and explosive eruptions, catastrophic earthquakes and huge debris-avalanches struck the island that, since Neolithic times, experienced a complex history of alternating human colonization and natural disasters. The field trip consists of three routes: 1) the circumnavigation of the island, aimed to outline its main volcanological, geomorphological and tectonic features and to observe the oldest volcanic rocks exposed, stimulating discussions about coastal evolution and the relationships between volcanism, volcano-tectonism and slope instability; 2) an onland excursion on peculiar aspects of the products related to Ischia more recent period of volcanic activity; 3) a route focusing on the Mt. Epomeo Green Tuff caldera forming eruptions (55-60 ka), encouraging a discussion on the dynamics of the intracalderic resurgence and the geomorphological evolution of the Mt. Epomeo slopes, with ongoing Mass Rock Creep (MRC) processes culminating in rockavalanche, debris-avalanche and lahar deposits.Published1-601V. Storia eruttivaJCR Journa

    Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures

    No full text
    In the last decades, thermal infrared ground-based cameras have become effective tools to detect significant spatio-temporal anomalies in the hydrothermal/volcanic environment, possibly linked to impending eruptions. In this paper, we analyzed the temperature time-series recorded by the ground-based Thermal Infrared Radiometer permanent network of INGV-OV, installed inside the Solfatara-Pisciarelli area, the most active fluid emission zones of the Campi Flegrei caldera (Italy). We investigated the temperatures’ behavior in the interval 25 June 2016–29 May 2020, with the aim of tracking possible endogenous hydrothermal/volcanic sources. We performed the Independent Component Analysis, the time evolution estimation of the spectral power, the cross-correlation and the Changing Points’ detection. We compared the obtained patterns with the behavior of atmospheric temperature and pressure, of the time-series recorded by the thermal camera of Mt. Vesuvius, of the local seismicity moment rate and of the CO2 emission flux. We found an overall influence of exogenous, large scale atmospheric effect, which dominated in 2016–2017. Starting from 2018, a clear endogenous forcing overcame the atmospheric factor, and dominated strongly soil temperature variations until the end of the observations. This paper highlights the importance of monitoring and investigating the soil temperature in volcanic environments, as well as the atmospheric parameters

    Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy)

    No full text
    Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island's coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area
    corecore