10 research outputs found

    Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    No full text
    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10−3 Ω cm−1, 11 cm2 V−1 s−1, and 1.62 × 1020 cm−3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements

    Hierarchical TiN Nanostructured Thin Film Electrode for Highly Stable PEM Fuel Cells

    No full text
    Fuel cells are, to date, on the verge of large-scale commercialization. Still, long-term stability is of concern, especially in the automotive field, mainly because of the cathodic catalyst support. In fact, carbonaceous materials, the state of the art to date, suffer from severe corrosion phenomena during discontinuous operation. In the effort to replace carbon as Pt support and develop a nanoengineered architecture for the fuel cell electrodes, we report here the concept of a hierarchical TiN nanostructured thin film (HTNTF) electrode, in which Pt is deposited on an array of quasi-1D TiN nanostructures with good conductivity, high roughness factor, tunable porosity, and outstanding chemical stability. The HTNTF is grown by self-assembly from the gas phase by means of a one-step, template-free, room-temperature process, namely, pulsed laser–scattered ballistic deposition, PL–SBD. The activity of the nanostructured thin film electrode is assessed toward the oxygen reduction reaction and its stability evaluated according to DOE accelerated stress test (AST) standard protocols, revealing an electrochemical surface area (ECSA) loss as low as 7% with respect to the 40% goal. Moreover, a proof-of-concept cell has been realized to demonstrate the applicability of our supports to the device scale. Despite the fact that further optimization is needed to achieve high performances, this new class of electrodes has clear potential in terms of stability with respect to the state of the art, overcoming carbon corrosion by simply removing it from direct contact with the Pt electrocatalyst

    Non‐Equilibrium Synthesis of Highly Active Nanostructured, Oxygen‐Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst

    No full text
    Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non‐equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self‐supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as‐synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S‐Mo‐S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec−1 Tafel slope) and remarkable long‐term stability for continuous operation up to ‐1 A cm−2. This work shows possible new avenues in catalytic design arising from a non‐equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS‐based catalysts

    Non‐Equilibrium Synthesis of Highly Active Nanostructured, Oxygen‐Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst

    No full text
    Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non‐equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self‐supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as‐synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S‐Mo‐S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec−1 Tafel slope) and remarkable long‐term stability for continuous operation up to ‐1 A cm−2. This work shows possible new avenues in catalytic design arising from a non‐equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS‐based catalysts

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore