49 research outputs found

    Further study of the Over-Barrier Model to compute charge exchange processes

    Get PDF
    In this paper we study theoretically the process of electron capture between one-optical-electron atoms (e.g. hydrogenlike or alkali atoms) and ions at low-to-medium impact velocities (v/ve≈1v/v_e \approx 1) working on a modification of an already developed classical In this work we present an improvement over the Over Barrier Model (OBM) described in a recent paper [F. Sattin, Phys. Rev. A {\bf 62}, 042711 (2000)]. We show that: i) one of the two free parameters there introduced actually comes out consistently from the starting assumptions underlying the model; ii) the modified model thus obtained is as much accurate as the former one. Furthermore, we show that OBMs are able to accurately predict some recent results of state selective electron capture, at odds with what previously supposed.Comment: RevTeX, 7 pages, 4 eps figures. To appear in Physical Review A (2001-september issue

    Classifying A-field and B-field configurations in the presence of D-branes

    Full text link
    We "solve" the Freed-Witten anomaly equation, i.e., we find a geometrical classification of the B-field and A-field configurations in the presence of D-branes that are anomaly-free. The mathematical setting being provided by the geometry of gerbes, we find that the allowed configurations are jointly described by a coset of a certain hypercohomology group. We then describe in detail various cases that arise according to such classification. As is well-known, only under suitable hypotheses the A-field turns out to be a connection on a canonical gauge bundle. However, even in these cases, there is a residual freedom in the choice of the bundle, naturally arising from the hypercohomological description. For a B-field which is flat on a D-brane, fractional or irrational charges of subbranes naturally appear; for a suitable gauge choice, they can be seen as arising from "gauge bundles with not integral Chern class": we give a precise geometric interpretation of these objects.Comment: 28 pages, no figure

    Topics on the geometry of D-brane charges and Ramond-Ramond fields

    Full text link
    In this paper we discuss some topics on the geometry of type II superstring backgrounds with D-branes, in particular on the geometrical meaning of the D-brane charge, the Ramond-Ramond fields and the Wess-Zumino action. We see that, depending on the behaviour of the D-brane on the four non-compact space-time directions, we need different notions of homology and cohomology to discuss the associated fields and charge: we give a mathematical definition of such notions and show their physical applications. We then discuss the problem of corretly defining Wess-Zumino action using the theory of p-gerbes. Finally, we recall the so-called *-problem and make some brief remarks about it.Comment: 29 pages, no figure

    A classical Over Barrier Model to compute charge exchange between ions and one-optical-electron atoms

    Get PDF
    In this paper we study theoretically the process of electron capture between one-optical-electron atoms (e.g. hydrogenlike or alkali atoms) and ions at low-to-medium impact velocities (v/v_e <= 1) working on a modification of an already developed classical Over Barrier Model (OBM) [V. Ostrovsky, J. Phys. B: At. Mol. Opt. Phys. {\bf 28} 3901 (1995)], which allows to give a semianalytical formula for the cross sections. The model is discussed and then applied to a number of test cases including experimental data as well as data coming from other sophisticated numerical simulations. It is found that the accuracy of the model, with the suggested corrections and applied to quite different situations, is rather high.Comment: 12 pages REVTEX, 5 EPSF figures, submitted to Phys Rev

    On general flux backgrounds with localized sources

    Full text link
    We derive new consistency conditions for string compactifications with generic fluxes (RR, NSNS, geometrical) and localized sources (D-branes, NS-branes, KK-monopoles). The constraints are all related by string dualities and share a common origin in M-theory. We also find new sources of instabilities. We discuss the importance of these conditions for the consistency of the effective action and for the study of interpolating solutions between vacua.Comment: 29 pages, 2 figures, v2: published versio

    Type-IIA flux compactifications and N=4 gauged supergravities

    Full text link
    We establish the precise correspondence between Type-IIA flux compactifications preserving an exact or spontaneously broken N=4 supersymmetry in four dimensions, and gaugings of their effective N=4 supergravities. We exhibit the explicit map between fluxes and Bianchi identities in the higher-dimensional theory and generalized structure constants and Jacobi identities in the reduced theory, also detailing the origin of gauge groups embedded at angles in the duality group. We present AdS4 solutions of the massive Type-IIA theory with spontaneous breaking to N=1, at small string coupling and large volume, and discuss their dual CFT3.Comment: 43 pages, 1 figure. v2: refs added, v3: minor additions. Final version to appear on JHE

    On the mixing time of the 2D stochastic Ising model with "plus" boundary conditions at low temperature

    Full text link
    We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature ÎČ\beta and random boundary conditions τ\tau whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to + (equal to -). For ÎČ\beta large enough we show that for any Ï”\epsilon there exists c=c(ÎČ,Ï”)c=c(\beta,\epsilon) such that the corresponding mixing time TmixT_{mix} satisfies lim⁥L→∞P(Tmix>exp⁥(cLÏ”))=0\lim_{L\to\infty}P(T_{mix}> \exp({cL^\epsilon})) =0. In the non-random case Ï„â‰Ą+\tau\equiv + (or Ï„â‰Ąâˆ’\tau\equiv -), this implies that Tmix<exp⁥(cLÏ”)T_{mix}< \exp({cL^\epsilon}). The same bound holds when the boundary conditions are all + on three sides and all - on the remaining one. The result, although still very far from the expected Lifshitz behaviour Tmix=O(L2)T_{mix}=O(L^2), considerably improves upon the previous known estimates of the form Tmix≀exp⁥(cL1/2+Ï”)T_{mix}\le \exp({c L^{1/2 + \epsilon}}). The techniques are based on induction over length scales, combined with a judicious use of the so-called "censoring inequality" of Y. Peres and P. Winkler, which in a sense allows us to guide the dynamics to its equilibrium measure.Comment: 39 pages, 8 figures; v2: typos corrected, two references added. To appear on Comm. Math. Phy

    D terms from D-branes, gauge invariance and moduli stabilization in flux compactifications

    Full text link
    We elucidate the structure of D terms in N=1 orientifold compactifications with fluxes. As a case study, we consider a simple orbifold of the type-IIA theory with D6-branes at angles, O6-planes and general NSNS, RR and Scherk-Schwarz geometrical fluxes. We examine in detail the emergence of D terms, in their standard supergravity form, from an appropriate limit of the D-brane action. We derive the consistency conditions on gauged symmetries and general fluxes coming from brane-localized Bianchi identities, and their relation with the Freed-Witten anomaly. We extend our results to other N=1 compactifications and to non-geometrical fluxes. Finally, we discuss the possible role of U(1) D terms in the stabilization of the untwisted moduli from the closed string sector.Comment: 1+31 pages, 1 figur

    Clauser-Horne inequality for electron counting statistics in multiterminal mesoscopic conductors

    Full text link
    In this paper we derive the Clauser-Horne (CH) inequality for the full electron counting statistics in a mesoscopic multiterminal conductor and we discuss its properties. We first consider the idealized situation in which a flux of entangled electrons is generated by an entangler. Given a certain average number of incoming entangled electrons, the CH inequality can be evaluated for different numbers of transmitted particles. Strong violations occur when the number of transmitted charges on the two terminals is the same (Q1=Q2Q_1=Q_2), whereas no violation is found for Q1≠Q2Q_1\ne Q_2. We then consider two actual setups that can be realized experimentally. The first one consists of a three terminal normal beam splitter and the second one of a hybrid superconducting structure. Interestingly, we find that the CH inequality is violated for the three terminal normal device. The maximum violation scales as 1/M and 1/M21/M^2 for the entangler and normal beam splitter, respectively, 2MM being the average number of injected electrons. As expected, we find full violation of the CH inequality in the case of the superconducting system.Comment: 26 pages, 9 figures. Ref. adde

    Interplay among critical temperature, hole content, and pressure in the cuprate superconductors

    Full text link
    Within a BCS-type mean-field approach to the extended Hubbard model, a nontrivial dependence of T_c on the hole content per unit CuO_2 is recovered, in good agreement with the celebrated non-monotonic universal behaviour at normal pressure. Evaluation of T_c at higher pressures is then made possible by the introduction of an explicit dependence of the tight-binding band and of the carrier concentration on pressure P. Comparison with the known experimental data for underdoped Bi2212 allows to single out an `intrinsic' contribution to d T_c / d P from that due to the carrier concentration, and provides a remarkable estimate of the dependence of the inter-site coupling strength on the lattice scale.Comment: REVTeX 8 pages, including 5 embedded PostScript figures; other required macros included; to be published in Phys. Rev. B (vol. 54
    corecore