19 research outputs found

    Profiling of the Predicted Circular RNAs in Ductal In Situ and Invasive Breast Cancer: A Pilot Study

    Get PDF
    The recent advantage obtained by next generation sequencing allows a depth investigation of a new “old” kind of noncoding transcript, the circular RNAs. Circular RNAs are nontranslated RNAs, typically nonpolyadenylated, with a resistance to exonucleases that gives them the ability to be more stable than the common linear RNA isoforms. We used a bioinformatic detection tool (CIRCexplorer) to research predictive circRNAs from the next generation sequenced data of five samples of ductal in situ carcinoma (DCIS) and matched adjacent invasive ductal carcinoma (IDC). Furthermore, we also investigated the circular RNAs expressed in MCF7, an invasive breast ductal carcinoma cell line. We described the genomic context of the predicted circular RNAs and we address the hypothetical possible functional roles. This study showed a perspective of a panel of predictive circRNAs identified and the function that circRNAs could exert

    Profiling of the Predicted Circular RNAs in Ductal In Situ and Invasive Breast Cancer: A Pilot Study

    Get PDF
    The recent advantage obtained by next generation sequencing allows a depth investigation of a new "old" kind of noncoding transcript, the circular RNAs. Circular RNAs are nontranslated RNAs, typically nonpolyadenylated, with a resistance to exonucleases that gives them the ability to be more stable than the common linear RNA isoforms. We used a bioinformatic detection tool (CIRCexplorer) to research predictive circRNAs from the next generation sequenced data of five samples of ductal in situ carcinoma (DCIS) and matched adjacent invasive ductal carcinoma (IDC). Furthermore, we also investigated the circular RNAs expressed in MCF7, an invasive breast ductal carcinoma cell line. We described the genomic context of the predicted circular RNAs and we address the hypothetical possible functional roles. This study showed a perspective of a panel of predictive circRNAs identified and the function that circRNAs could exert

    Heterogeneity in circulating tumor cells : the relevance of the stem-cell subset

    Get PDF
    The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial⁻mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity

    Loss of miR-204 expression is a key event in melanoma

    Get PDF
    Cutaneous melanoma (CM) is a malignancy with increasing occurrence. Its microRNA repertoire has been defined in a number studies, leading to candidates for biological and clinical relevance: miR-200a/b/c, miR-203, miR-205, miR-204, miR-211, miR-23b and miR-26a/b. Our work was aimed to validate the role of these candidate miRNAs in melanoma, using additional patients cohorts and in vitro cultures. miR-26a, miR-204 and miR-211 were more expressed in normal melanocytes, while miR-23b, miR-200b/c, miR-203 and miR-205 in epidermis and keratinocytes. None of the keratinocyte-related miRNAs was associated with any known mutation or with clinical covariates in melanoma. On the other hand, the loss of miR-204 was enriched in melanomas with NRAS sole mutation (Fisher exact test, P = 0.001, Log Odds = 1.67), and less frequent than expected in those harbouring CDKN2A mutations (Fisher exact test, P = 0.001, Log Odds − 1.09). Additionally, miR-204 was associated with better prognosis in two independent melanoma cohorts and its exogenous expression led to growth impairment in melanoma cell lines. Thus, miR-204 represents a relevant mechanism in melanoma, with potential prognostic value and its loss seems to act in the CDKN2A pathway, in cooperation with NRAS

    SNPs and Somatic Mutation on Long Non-Coding RNA: New Frontier in the Cancer Studies?

    Get PDF
    In the last decade, it has been demonstrated that long non-coding RNAs (lncRNAs) are involved in cancer development. The great majority of studies on lncRNAs report alterations, principally on their expression profiles, in several tumor types with respect to the normal tissues of origin. Conversely, since lncRNAs constitute a relatively novel class of RNAs compared to protein-coding transcripts (mRNAs), the landscape of their mutations and variations has not yet been extensively studied. However, in recent years an ever-increasing number of articles have described mutations of lncRNAs. Single-nucleotide polymorphisms (SNPs) that occur within the lncRNA transcripts can affect the structure and function of these RNA molecules, while the presence of a SNP in the promoter region of a lncRNA could alter its expression level. Also, somatic mutations that occur within lncRNAs have been shown to exert important effects in cancer and preliminary data are promising. Overall, the evidence suggests that SNPs and somatic mutation on lncRNAs may play a role in the pathogenesis of cancer, and indicates strong potential for further development of lncRNAs as biomarkers

    The Network of Non-coding RNAs in Cancer Drug Resistance

    Get PDF
    Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments

    Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines

    No full text
    Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, VRK1 and MAN1A2 were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells

    Screen for MicroRNA and Drug Interactions in Breast Cancer Cell Lines Points to miR-126 as a Modulator of CDK4/6 and PIK3CA Inhibitors

    No full text
    Background: Breast cancer (BC) represents the most common cancer in women worldwide. Due to its heterogeneous nature, breast cancer management might benefit from differential treatments toward personalized medicine. Additionally, drug resistance is a common phenomenon. We systematically investigated the effect of 14 different drugs administered on BC cell lines in combination with microRNAs (miRNA, miR).Methods: Thirty-eight miRNAs, all associated with BC by clinical and molecular parameters including progression, prognosis and subtypes, were tested for their effects on the viability of 12 different BC cell lines. Four miRNAs with the strongest impact on viability were further assayed in combination with 14 BC drugs. Mann–Whitney U-test with Bonferroni correction was used for statistical analysis.Results: In a miRNA only pre-screen we observed effects on BC cell lines' viability for 34 out of 38 candidate miRNAs. We then identified 14 miRNA/drug combinations for which the combination IC50 was lower than that of both miRNA and drug as single agents. miR-181a, paired with GSK1070916, Doxorubicin, XL765 and AMG511, was the only miRNA active on the triple negative (TNBC) MDA-MB-468 cell line. miR-126 was the only miRNA (in combination with CDK4/6 or PIK3CA inhibitors) with significant effects on cell lines from different subtypes: MCF7 (Luminal) and MDA-MB-453 (HER2+). Because of its activity on different BC subtypes, we investigated the genome wide effects of miR-126 using transcriptomics and confirmed that expression of miR-126 in BC cell lines affected cell cycle and mitosis.Conclusion: Our results show that a combination treatment with miRNAs, in particular miR-181a, miR-326, miR-9 and miR-126, enhance the activity of specific BC drugs in vitro, even on the most aggressive BC subtypes, HER2+ and TNBC. Finally, as expected from its drug interactions, based on a whole transcriptome study we could confirm a role for miR-126 in cell cycle regulation

    Heterogeneous expression of EPCAM in human circulating tumour cells from patient-derived xenografts

    Get PDF
    Abstract Background We aim to characterize the heterogeneous circulating tumour cells (CTCs) in peripheral blood, independently of physical or immunological purification, by using patient-derived xenografts (PDXs) models. CTC studies from blood generally rely on enrichment or purification. Conversely, we devised a method for the inclusive study of human cells from blood of PDX models, without pre-selection or enrichment. Methods A qRT-PCR assay was developed to detect human and cancer-related transcripts from CTCs in PDXs. We quantified the EPCAM and keratins CTC markers, in a PDX cohort of breast cancer. The murine beta actin gene was used for normalization. Spearman’s rho coefficients were calculated for correlation. Results We demonstrated, for the first time, that we can quantify the content of CTCs and the expression of human CTC markers in PDX blood using human-specific qRT-PCR. Our method holds strong potential for the study of CTC heterogeneity and for the identification of novel CTC markers. Conclusions The identification and the relative quantification of the diverse spectrum of CTCs in patients, irrespective of EPCAM or other currently used markers, will have a great impact on personalized medicine: unrestricted CTCs characterization will allow the early detection of metastases in cancer patients and the assessment of personalized therapies

    Data_Sheet_2_Screen for MicroRNA and Drug Interactions in Breast Cancer Cell Lines Points to miR-126 as a Modulator of CDK4/6 and PIK3CA Inhibitors.XLSX

    Get PDF
    <p>Background: Breast cancer (BC) represents the most common cancer in women worldwide. Due to its heterogeneous nature, breast cancer management might benefit from differential treatments toward personalized medicine. Additionally, drug resistance is a common phenomenon. We systematically investigated the effect of 14 different drugs administered on BC cell lines in combination with microRNAs (miRNA, miR).</p><p>Methods: Thirty-eight miRNAs, all associated with BC by clinical and molecular parameters including progression, prognosis and subtypes, were tested for their effects on the viability of 12 different BC cell lines. Four miRNAs with the strongest impact on viability were further assayed in combination with 14 BC drugs. Mann–Whitney U-test with Bonferroni correction was used for statistical analysis.</p><p>Results: In a miRNA only pre-screen we observed effects on BC cell lines' viability for 34 out of 38 candidate miRNAs. We then identified 14 miRNA/drug combinations for which the combination IC<sub>50</sub> was lower than that of both miRNA and drug as single agents. miR-181a, paired with GSK1070916, Doxorubicin, XL765 and AMG511, was the only miRNA active on the triple negative (TNBC) MDA-MB-468 cell line. miR-126 was the only miRNA (in combination with CDK4/6 or PIK3CA inhibitors) with significant effects on cell lines from different subtypes: MCF7 (Luminal) and MDA-MB-453 (HER2<sup>+</sup>). Because of its activity on different BC subtypes, we investigated the genome wide effects of miR-126 using transcriptomics and confirmed that expression of miR-126 in BC cell lines affected cell cycle and mitosis.</p><p>Conclusion: Our results show that a combination treatment with miRNAs, in particular miR-181a, miR-326, miR-9 and miR-126, enhance the activity of specific BC drugs in vitro, even on the most aggressive BC subtypes, HER2+ and TNBC. Finally, as expected from its drug interactions, based on a whole transcriptome study we could confirm a role for miR-126 in cell cycle regulation.</p
    corecore