108 research outputs found
Oscillator potential for the four-dimensional Hall effect
We suggest the exactly solvable model of oscillator on the four-dimensional
sphere interacting with the SU(2) Yang monopole. We show, that the properties
of the model essentially depend on the monopole charge.Comment: 4 page
Quantum Hall Effect on the Flag Manifold F_2
The Landau problem on the flag manifold
is analyzed from an algebraic point of view. The involved magnetic background
is induced by two U(1) abelian connections. In quantizing the theory, we show
that the wavefunctions, of a non-relativistic particle living on ,
are the SU(3) Wigner -functions satisfying two constraints. Using the
algebraic and geometrical structures, we derive the Landau
Hamiltonian as well as its energy levels. The Lowest Landau level (LLL)
wavefunctions coincide with the coherent states for the mixed SU(3)
representations. We discuss the quantum Hall effect for a filling factor . where the obtained particle density is constant and finite for a strong
magnetic field. In this limit, we also show that the system behaves like an
incompressible fluid. We study the semi-classical properties of the system
confined in LLL. These will be used to discuss the edge excitations and
construct the corresponding Wess-Zumino-Witten action.Comment: 23 pages, two sections and references added, misprints corrected,
version to appear in IJMP
Quantum Oscillator on \DC P^n in a constant magnetic field
We construct the quantum oscillator interacting with a constant magnetic
field on complex projective spaces \DC P^N, as well as on their non-compact
counterparts, i. e. the dimensional Lobachewski spaces . We
find the spectrum of this system and the complete basis of wavefunctions.
Surprisingly, the inclusion of a magnetic field does not yield any qualitative
change in the energy spectrum. For the magnetic field does not break the
superintegrability of the system, whereas for N=1 it preserves the exact
solvability of the system.
We extend this results to the cones constructed over \DC P^N and , and perform the (Kustaanheimo-Stiefel) transformation of these systems
to the three-dimensional Coulomb-like systems.Comment: 9 pages, 1 figur
Self-gravitating Yang Monopoles in all Dimensions
The (2k+2)-dimensional Einstein-Yang-Mills equations for gauge group SO(2k)
(or SU(2) for k=2 and SU(3) for k=3) are shown to admit a family of
spherically-symmetric magnetic monopole solutions, for both zero and non-zero
cosmological constant Lambda, characterized by a mass m and a magnetic-type
charge. The k=1 case is the Reissner-Nordstrom black hole. The k=2 case yields
a family of self-gravitating Yang monopoles. The asymptotic spacetime is
Minkowski for Lambda=0 and anti-de Sitter for Lambda<0, but the total energy is
infinite for k>1. In all cases, there is an event horizon when m>m_c, for some
critical mass , which is negative for k>1. The horizon is degenerate when
m=m_c, and the near-horizon solution is then an adS_2 x S^{2k} vacuum.Comment: 16 pp. Extensive revision to include case of non-zero cosmological
constant and implications for adS/CFT. Numerous additional reference
A Matrix Big Bang
The light-like linear dilaton background represents a particularly simple
time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten
dimensions. Its lift to M-theory, as well as its Einstein frame metric, are
singular in the sense that the geometry is geodesically incomplete and the
Riemann tensor diverges along a light-like subspace of codimension one. We
study this background as a model for a big bang type singularity in string
theory/M-theory. We construct the dual Matrix theory description in terms of a
(1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given
by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a
framework in which the physics of the singularity appears to be under control.Comment: 25 pages, LaTeX; v2: discussion of singularity of Einstein frame
metric added, references adde
Relativistic D-brane Scattering is Extremely Inelastic
We study the effects of quantum production of open strings on the
relativistic scattering of D-branes. We find strong corrections to the brane
trajectory from copious production of highly-excited open strings, whose
typical oscillator level is proportional to the square of the rapidity. In the
corrected trajectory, the branes rapidly coincide and remain trapped in a
configuration with enhanced symmetry. This is a purely stringy effect which
makes relativistic brane collisions exceptionally inelastic. We trace this
effect to velocity-dependent corrections to the open-string mass, which render
open strings between relativistic D-branes surprisingly light. We observe that
pair-creation of open strings could play an important role in cosmological
scenarios in which branes approach each other at very high speeds.Comment: 30 pages; added references and a comment about velocity-dependent
masse
A Matrix Model for \nu_{k_1k_2}=\frac{k_1+k_2}{k_1 k_2} Fractional Quantum Hall States
We propose a matrix model to describe a class of fractional quantum Hall
(FQH) states for a system of (N_1+N_2) electrons with filling factor more
general than in the Laughlin case. Our model, which is developed for FQH states
with filling factor of the form \nu_{k_1k_2}=\frac{k_1+k_2}{k_1k_2} (k_1 and
k_2 odd integers), has a U(N_1)\times U(N_2) gauge invariance, assumes that FQH
fluids are composed of coupled branches of the Laughlin type, and uses ideas
borrowed from hierarchy scenarios. Interactions are carried, amongst others, by
fields in the bi-fundamentals of the gauge group. They simultaneously play the
role of a regulator, exactly as does the Polychronakos field. We build the
vacuum configurations for FQH states with filling factors given by the series
\nu_{p_1p_2}=\frac{p_2}{p_1p_2-1}, p_1 and p_2 integers. Electrons are
interpreted as a condensate of fractional D0-branes and the usual degeneracy of
the fundamental state is shown to be lifted by the non-commutative geometry
behaviour of the plane. The formalism is illustrated for the state at
\nu={2/5}.Comment: 40 pages, 1 figure, clarifications and references adde
A Matrix Model for the Null-Brane
The null-brane background is a simple smooth 1/2 BPS solution of string
theory. By tuning a parameter, this background develops a big crunch/big bang
type singularity. We construct the DLCQ description of this space-time in terms
of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix
description provides a non-perturbative framework in which the fate of both
(null) time, and the string S-matrix can be studied.Comment: 26 pages, LaTeX; references adde
World-sheet duality for D-branes with travelling waves
We study D-branes with plane waves of arbitrary profiles as examples of
time-dependent backgrounds in string theory. We show how to reproduce the
quantum mechanical (one-to-one) open-string S-matrix starting from the
closed-string boundary state for the D-branes, thereby establishing the channel
duality of this calculation. The required Wick rotation to a Lorentzian
worldsheet singles out as 'prefered' time coordinate the open-string light-cone
time.Comment: 17 pages, Latex file, uses JHEP3.cls, two figures. Added references
and corrected two typo
- …
