12 research outputs found

    PathFinder 2015

    Get PDF
    æ‹…ćœ“æ•™ć“Ą:ć§‰ć·é›„ć€§ćčłæˆ27ćčŽćșŠ(2015)æ•™é€Šć±•é–‹ç§‘ç›ź(ć›œéš›ă‚łă‚ąé–ąé€Ł),æŽˆæ„­ă‚łăƒŒăƒ‰:15N1060

    Additional file 1 of ROX index performance to predict high-flow nasal oxygen outcome in Covid-19 related hypoxemic acute respiratory failure

    No full text
    Additional file 1: Figure S1. Receiver operating characteristic curves for HFNO failure within 28 days at different times after HFNO initiation. HFNO: high-flow nasal oxygen therapy; ROC: receiver operating characteristic; H0: ROC curve at the time of HFNO initiation; H12:12 hours after HFNO initiation; H18: 18 hours after HFNO initiation; H24:24 hours after HFNO initiation. Figure S2. Rox index performance to predict the risk of HFNO failure at different times after HFNO initiation. HFNO: high-flow nasal oxygen therapy; red line gives proportion of patients in the HFNO failure group with a ROX index ≀ a chosen cut-off value; black line gives proportion of patients in the HFNO success group with a ROX index ≀ a chosen cut-off value. For example: at H6, using a Rox index of ≀8.50 as cut-off would identify 90% of patients with HFNO failure after H6, whereas this cut-off would identify only 38% of patients with HFNO success after H6, avoiding intubation. Figure S3. Incidence of HFNO failure within 7 days after HFNO initiation. HFNO: high-flow nasal oxygen therapy. Table S4. Conditions of intubation and clinical respiratory parameters in all intubated patients and according to hemodynamic status. HFNO: high-flow nasal oxygen therapy; FiO2: fraction of inspired oxygen; SpO2: pulse oxygen saturation; RR: respiratory rate; values are expressed as n (%) or median (Q1-Q3). Table S5. Rox index at H0, HFNO outcome and duration according to each ICU center. HFNO: high-flow nasal oxygen therapy; ICU: intensive care unit; values are expressed as n (%) or median (Q1-Q3); *= logistic regression unless stated otherwise; **= Kruskall-Wallis’s test

    Additional file 2: of Comparison of fluid balance and hemodynamic and metabolic effects of sodium lactate versus sodium bicarbonate versus 0.9% NaCl in porcine endotoxic shock: a randomized, open-label, controlled study

    No full text
    Study design. During preparation period, all animals received 25 mL/kg 0.9% NaCl to prevent hypovolemia. When all preparations were completed, a 30-min period was allowed to stabilize the measured variables. Measurements were taken over a 5-h period. All animals were administered 5 Όg/kg/min Escherichia coli lipopolysaccharide (LPS) (serotype 055:B5; Sigma Chemical Co., St. Louis, MO, USA). If MAP fell below 65 mmHg, 2.5 mL/kg infusion of NaCl 0.9% was given as rescue therapy every 15 min. We studied three groups receiving 450 mL (from T30 to T300) of different fluids as follows: 11.2% hypertonic sodium lactate AP-HPÂź (AGEPS, Paris, France) (SL group), 0.9% NaCl (NC group), and 8.4% hypertonic sodium bicarbonate (SB group). In order to inject an equivalent energy supply, 5% glucose solution (Baxter SAS, Guyancourt, France) was perfused in the NC and SB groups. Finally, in order to maintain the same fluid intake in the three groups, the SL group received 780 mL sterile water for injection (Baxter SAS, Guyancourt, France) in place of 5% glucose solution from T30 to T300. SL, Sodium lactate group; SB, sodium bicarbonate group; NC, NaCl 0.9% group; MAP, mean arterial pressure; HR, heart rate; BP, blood pressure; PBP, pulmonary blood pressure; PCWP, pulmonary capillary wedge pressure; RAP, right atrial pressure; SvO2, mixed venous oxygen saturation; CI, cardiac index; SDF, sidestream dark field; NIRS, near-infrared spectroscopy; A-VBG, arterial and venous blood gas. (PDF 48 kb
    corecore