12 research outputs found

    Immune recognition of ADAMTS13 in acquired TTP

    Get PDF
    Thrombotic thrombocytopenic purpura (TTP) is a severe thrombotic micro-angiopathy presenting with hemolytic anemia and thrombocytopenia that results from an acquired or congenital functional deficiency of the von Willebrand factor cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 repeats member 13). Acquired TTP is due to the development of auto-antibodies directed towards ADAMTS13 in healthy individuals. It is currently not known what triggers the onset of acquired TTP in these individuals. We found that macrophages efficiently endocytosed ADAMTS13 via the scavenger receptor CD163. CD163 is highly expressed on tissue-resident macrophages in the liver and the spleen, positioning it as a candidate receptor involved in clearance of ADAMTS13 from the circulation. We identified for the first time CD4+ reactive T-cells against ADAMTS13 and ADAMTS13-derived peptides in 2 patients with acquired TTP. Using a mass spectrometric approach we extended our knowledge on the ADAMTS13-derived peptides that are presented on MHC-II by monocyte derived dendritic cells. We developed a method that allows for monitoring of peptides presented on HLA-DQ and compared those peptides to the peptides presented on HLA-DR. These data provide a basis for more extensive profiling of CD4+ T-cells in patients with acquired TTP. Our findings complement previous studies on the association of specific HLA-DR (DRB1*11) and HLA-DQ (DQB1*03) and the onset of acquired TTP. Since ADAMTS13 is highly glycosylated and glycosylation is reported to play an important role in the onset of several autoimmune diseases we mapped the glycan structures attached on ADAMTS13 using a mass spectrometry

    Acquired TTP: ADAMTS13 meets the immune system

    No full text
    The majority of the patients affected by acquired thrombotic thrombocytopenic purpura (TTP) develop autoantibodies directed towards ADAMTS13 that interfere with its von Willebrand Factor (VWF) processing activity. B cell responses have been shown to primarily target the spacer domain of ADAMTS13 thereby prohibiting the binding of ADAMTS13 to the VWF A2 domain. In this review we summarize recent knowledge gained on the immune recognition and processing of ADAMTS13 by antigen-presenting cells (APCs). HLA-DRB1*11 has been identified as a risk factor for acquired TTP. Analysis of MHC class II/peptide complexes of ADAMTS13 pulsed dendritic cells have shown that the CUB2 domain derived peptide FINVAPHAR is preferentially presented on HLA-DRB1*11. Based on these findings we propose a model for the initiation of the autoimmune reactivity against ADAMTS13 in previously healthy individuals. We hypothesize that mimicry between a pathogen-derived peptide and the CUB2 derived FINVAPHAR-peptide might contribute to the onset of acquired TT

    Identification of glycans on plasma-derived ADAMTS13

    No full text
    Patients suffering from acquired thrombotic thrombocytopenic purpura develop autoantibodies directed toward the plasma glycoprotein ADAMTS13. Here, we studied the glycan composition of plasma-derived ADAMTS13. Purified ADAMTS13 was reduced, alkylated, and processed into peptides with either trypsin or chymotrypsin. Glycopeptides were enriched using zwitterionic HILIC zip-tips and analyzed by tandem mass spectrometry employing higher-energy collision dissociation fragmentation. Upon detection of a diagnostic ion of a glycan fragment, electron transfer dissociation fragmentation was performed on the same precursor ion. The majority of N-linked glycans were of the complex type containing terminal sialic acids and fucose residues. A high mannose-containing glycan was attached to Asn614 in the spacer domain. Six O-linked glycans mostly terminating in sialic acid were found dispersed over ADAMTS13. Five O-linked glycans were attached to a Ser and one to Thr. All 6 O-linked glycans contained a terminal sialic acid. O-fucosylation is a common posttranslational modification of thrombospondin type 1 repeats. We identified 7 O-fucosylation sites in the thrombospondin (TSP) type 1 repeats. Unexpectedly, one additional O-fucosylation site was found in the disintegrin domain. This O-fucosylation site did not meet the proposed consensus sequence CSX(S/T)CG. C-mannosylation sites were identified in TSP1, linker TSP4-TSP5, and TSP8. Overall, our findings highlight the complexity of glycan modifications on ADAMTS13, which may have implications for its interaction with immune- or clearance receptors containing carbohydrate recognition domain

    CD4+ T cells from patients with acquired thrombotic thrombocytopenic purpura recognize CUB2 domain-derived peptides

    No full text
    Acquired thrombotic thrombocytopenic purpura (TTP) is a life-threatening disorder resulting from the development of autoantibodies against ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). HLA-DRB1*11 provides a risk factor for developing acquired TTP. Pulsing of antigen-presenting cells from HLA-DRB1*11- and HLA-DRB1*03-positive individuals with ADAMTS13 resulted in presentation of peptides derived from the CUB2 domain of ADAMTS13 with core sequences FINVAPHAR or ASYILIRD. Here, we assessed whether FINVAPHAR- or ASYILIRD-reactive CD4(+)T cells are present in peripheral blood mononuclear cells from HLA-DRB1*11 and HLA-DRB1*03-positive subjects with acquired TTP. The presence of ADAMTS13-reactive CD4(+)T cells was addressed by flow cytometry and the expression of activation marker CD40 ligand by CD4(+)T cells. FINVAPHAR-reactive CD4(+)T cells were identified in an HLA-DRB1*11-positive patient during the acute phase of the disease whereas ASYILIRD-positive CD4(+)T cells were identified in a DRB1*03-positive patient with acquired TTP. Frequencies of CUB2 domain-reactive CD4(+)T cells ranged from 3.3% to 4.5%. Control peptides in which the anchor residues were modified did not induce activation of CD4(+)T cells. Taken together, our data provide evidence for the involvement of CUB2 domain-reactive CD4(+)T cells in the etiology of acquired TT

    Mass spectrometry-assisted identification of ADAMTS13-derived peptides presented on HLA-DR and HLA-DQ

    Get PDF
    Formation of microthrombi is a hallmark of acquired thrombotic thrombocytopenic purpura. These microthrombi originate from insufficient processing of ultra large von Willebrand factor multimers by ADAMTS13 due to the development of anti-ADAMTS13 autoantibodies. Several studies have identified the major histocompatibility complex class II alleles HLA-DRB1*11, HLA-DQB1*03 and HLA-DQB1*02:02 as risk factors for acquired thrombotic thrombocytopenic purpura development. Previous research in our department indicated that ADAMTS13 CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR are presented on HLA-DRB1*11 and HLA-DRB1*03, respectively. Here, we describe the repertoire of ADAMTS13 peptides presented on HLA-DQ. In parallel, the repertoire of ADAMTS13-derived peptides presented on HLA-DR was monitored. Using HLA-DR- and HLA-DQ-specific antibodies, we purified HLA/peptide complexes from ADAMTS13-pulsed monocyte-derived dendritic cells. Using this approach, we identified ADAMTS13-derived peptides presented on HLA-DR for all 9 samples analyzed; ADAMTS13-derived peptides presented on HLA-DQ were identified in 4 out of 9 samples. We were able to confirm the presentation of the CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR on HLA-DR. In total, 12 different core-peptide sequences were identified on HLA-DR and 8 on HLA-DQ. For HLA-DR11, several potential new core-peptides were found; 4 novel core-peptides were exclusively identified on HLA-DQ. Furthermore, an in silico analysis was performed using the EpiMatrix and JanusMatrix tools to evaluate the eluted peptides, in the context of HLA-DR, for putative effector or regulatory T-cell responses at the population level. The results from this study provide a basis for the identification of immuno-dominant epitopes on ADAMTS13 involved in the onset of acquired thrombotic thrombocytopenic purpura

    Mass spectrometry-assisted identification of ADAMTS13-derived peptides presented on HLA-DR and HLA-DQ

    No full text
    Formation of microthrombi is a hallmark of acquired thrombotic thrombocytopenic purpura. These microthrombi originate from insufficient processing of ultra large von Willebrand factor multimers by ADAMTS13 due to the development of anti-ADAMTS13 autoantibodies. Several studies have identified the major histocompatibility complex class II alleles HLA-DRB1*11, HLA-DQB1*03 and HLA-DQB1*02:02 as risk factors for acquired thrombotic thrombocytopenic purpura development. Previous research in our department indicated that ADAMTS13 CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR are presented on HLA-DRB1*11 and HLA-DRB1*03, respectively. Here, we describe the repertoire of ADAMTS13 peptides presented on HLA-DQ. In parallel, the repertoire of ADAMTS13-derived peptides presented on HLA-DR was monitored. Using HLA-DR- and HLA-DQ-specific antibodies, we purified HLA/peptide complexes from ADAMTS13-pulsed monocyte-derived dendritic cells. Using this approach, we identified ADAMTS13-derived peptides presented on HLA-DR for all 9 samples analyzed; ADAMTS13-derived peptides presented on HLA-DQ were identified in 4 out of 9 samples. We were able to confirm the presentation of the CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR on HLA-DR. In total, 12 different core-peptide sequences were identified on HLA-DR and 8 on HLA-DQ. For HLA-DR11, several potential new core-peptides were found; 4 novel core-peptides were exclusively identified on HLA-DQ. Furthermore, an in silico analysis was performed using the EpiMatrix and JanusMatrix tools to evaluate the eluted peptides, in the context of HLA-DR, for putative effector or regulatory T-cell responses at the population level. The results from this study provide a basis for the identification of immuno-dominant epitopes on ADAMTS13 involved in the onset of acquired thrombotic thrombocytopenic purpura.status: publishe

    The class I scavenger receptor CD163 promotes internalization of ADAMTS13 by macrophages

    No full text
    Internalization of ADAMTS13 by macrophages may contribute to its clearance from the circulation. Here we investigated endocytic mechanisms that contribute to the uptake of ADAMTS13 by macrophages. Human monocyte-derived macrophages were used to monitor the uptake of fluorescently labeled recombinant ADAMTS13 by flow cytometry. Internalization of ADAMTS13 was blocked upon addition of the cell-permeable dynamin inhibitor dynasore. Partial blocking of ADAMTS13 uptake was observed by using mannan; however, uptake was not affected by an antibody that blocked binding to the macrophage mannose receptor CD206, which suggests that other endocytic receptors contribute to the internalization of ADAMTS13 by macrophages. A pull-down with ADAMTS13 and subsequent mass spectrometric analysis identified the class I scavenger receptor CD163 as a candidate receptor for ADAMTS13. Blocking experiments with monoclonal anti-CD163 antibody EDHu-1 resulted in decreased ADAMTS13 internalization by macrophages. Pronounced inhibition of ADAMTS13 uptake by EDHu-1 was observed in CD163 high-expressing macrophages. In agreement with these findings, CD163-expressing Chinese hamster ovary cells were capable of rapidly internalizing ADAMTS13. Surface plasmon resonance revealed binding of ADAMTS13 to scavenger receptor cysteine-rich domains 1-9 and 1-5 of CD163. Taken together, our data identify CD163 as a major endocytic receptor for ADAMTS13 on macrophages

    The class I scavenger receptor CD163 promotes internalization of ADAMTS13 by macrophages

    No full text
    Internalization of ADAMTS13 by macrophages may contribute to its clearance from the circulation. Here we investigated endocytic mechanisms that contribute to the uptake of ADAMTS13 by macrophages. Human monocyte-derived macrophages were used to monitor the uptake of fluorescently labeled recombinant ADAMTS13 by flow cytometry. Internalization of ADAMTS13 was blocked upon addition of the cell-permeable dynamin inhibitor dynasore. Partial blocking of ADAMTS13 uptake was observed by using mannan; however, uptake was not affected by an antibody that blocked binding to the macrophage mannose receptor CD206, which suggests that other endocytic receptors contribute to the internalization of ADAMTS13 by macrophages. A pull-down with ADAMTS13 and subsequent mass spectrometric analysis identified the class I scavenger receptor CD163 as a candidate receptor for ADAMTS13. Blocking experiments with monoclonal anti-CD163 antibody EDHu-1 resulted in decreased ADAMTS13 internalization by macrophages. Pronounced inhibition of ADAMTS13 uptake by EDHu-1 was observed in CD163 high-expressing macrophages. In agreement with these findings, CD163-expressing Chinese hamster ovary cells were capable of rapidly internalizing ADAMTS13. Surface plasmon resonance revealed binding of ADAMTS13 to scavenger receptor cysteine-rich domains 1-9 and 1-5 of CD163. Taken together, our data identify CD163 as a major endocytic receptor for ADAMTS13 on macrophage
    corecore