8 research outputs found
Analyzing program termination and complexity automatically with AProVE
In this system description, we present the tool AProVE for automatic termination and complexity proofs of Java, C, Haskell, Prolog, and rewrite systems. In addition to classical term rewrite systems (TRSs), AProVE also supports rewrite systems containing built-in integers (int-TRSs). To analyze programs in high-level languages, AProVE automatically converts them to (int-)TRSs. Then, a wide range of techniques is employed to prove termination and to infer complexity bounds for the resulting rewrite systems. The generated proofs can be exported to check their correctness using automatic certifiers. To use AProVE in software construction, we present a corresponding plug-in for the popular Eclipse software development environment
Symbolic Evaluation Graphs and Term Rewriting -- A General Methodology for Analyzing Logic Programs
There exist many powerful techniques to analyze termination and complexity of term rewrite systems (TRSs). Our goal is to use these techniques for the analysis of other programming languages as well. For instance, approaches to prove termination of definite logic programs by a transformation to TRSs have been studied for decades. However, a challenge is to handle languages with more complex evaluation strategies (such as Prolog, where predicates like the cut influence the control flow). In this paper, we present a general methodology for the analysis of such programs. Here, the logic program is first transformed into a symbolic evaluation graph which represents all possible evaluations in a finite way. Afterwards, different analyses can be performed on these graphs. In particular, one can generate TRSs from such graphs and apply existing tools for termination or complexity analysis of TRSs to infer information on the termination or complexity of the original logic program