6 research outputs found

    Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide

    No full text
    Formamidinium lead iodide (FAPbI<sub>3</sub>) has the potential to achieve higher performance than established perovskite solar cells like methylammonium lead iodide (MAPbI<sub>3</sub>), while maintaining a higher stability. The major drawback for the latter material is that it can crystallize at room temperature in a wide bandgap hexagonal symmetry (<i>P</i>6<sub>3</sub><i>mc</i>) instead of the desired trigonal (<i>P</i>3<i>m</i>1) black phase formed at a higher temperature (130 °C). Our results show that employing a mixture of MAI and FAI in films deposited via a two-step approach, where the MAI content is <20%, results in the exchange of FA molecules with MA without any significant lattice shrinkage. Additionally, we show with temperature-dependent X-ray diffraction that the trigonal phase exhibits no phase changes in the temperature range studied (25 to 250 °C). We attribute the stabilization of the structure to stronger interactions between the MA cation and the inorganic cage. Finally, we show that the inclusion of this small amount of MA also has a positive effect on the lifetime of the photoexcited species and results in more efficient devices

    Synthesis and Reactivity of Triazaphenanthrenes

    No full text
    Pyridonaphthyridines (triazaphenanthrenes) were prepared in 4 steps and in 13–52% overall yield using Negishi cross-couplings between iodopicolines and 2-chloro-pyridylzinc derivatives. After chlorination, Gabriel amination and spontaneous ring-closure, the final aromatization leading to the triazaphenanthrenes was achieved with chloranil. This heterocyclic scaffold underwent a nucleophilic addition at position 6 leading to further functionalized pyridonaphthyridines. The influence of these chemical modifications on the optical properties was studied by steady-state and time-resolved optical spectroscopy. While the thiophene-substituted heterocycles exhibited the most extended absorption, the phenyl- and furan-substituted compounds showed a stronger photoluminescence, reaching above 20% quantum yield and lifetimes of several nanoseconds

    Oligothiophene-Bridged Conjugated Covalent Organic Frameworks

    No full text
    Two-dimensional covalent organic frameworks (2D-COFs) are crystalline, porous materials comprising aligned columns of π-stacked building blocks. With a view toward the application of these materials in organic electronics and optoelectronics, the construction of oligothiophene-based COFs would be highly desirable. The realization of such materials, however, has remained a challenge, in particular with respect to laterally conjugated imine-linked COFs. We have developed a new building block design employing an asymmetric modification on an otherwise symmetric backbone that allows us to construct a series of highly crystalline quaterthiophene-derived COFs with tunable electronic properties. Studying the optical response of these materials, we have observed for the first time the formation of a charge transfer state between the COF subunits across the imine bond. We believe that our new building block design provides a general strategy for the construction of well-ordered COFs from various extended building blocks, thus greatly expanding the range of applicable molecules

    Preparation of Single-Phase Films of CH<sub>3</sub>NH<sub>3</sub>Pb(I<sub>1–<i>x</i></sub>Br<sub><i>x</i></sub>)<sub>3</sub> with Sharp Optical Band Edges

    No full text
    Organometallic lead-halide perovskite-based solar cells now approach 18% efficiency. Introducing a mixture of bromide and iodide in the halide composition allows tuning of the optical bandgap. We prepare mixed bromide–iodide lead perovskite films CH<sub>3</sub>NH<sub>3</sub>Pb­(I<sub>1–<i>x</i></sub>Br<sub><i>x</i></sub>)<sub>3</sub> (0 ≤ <i>x</i> ≤ 1) by spin-coating from solution and obtain films with monotonically varying bandgaps across the full composition range. Photothermal deflection spectroscopy, photoluminescence, and X-ray diffraction show that following suitable fabrication protocols these mixed lead-halide perovskite films form a single phase. The optical absorption edge of the pure triiodide and tribromide perovskites is sharp with Urbach energies of 15 and 23 meV, respectively, and reaches a maximum of 90 meV for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>1.2</sub>Br<sub>1.8</sub>. We demonstrate a bromide–iodide lead perovskite film (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>1.2</sub>Br<sub>1.8</sub>) with an optical bandgap of 1.94 eV, which is optimal for tandem cells of these materials with crystalline silicon devices

    Synchronized Offset Stacking: A Concept for Growing Large-Domain and Highly Crystalline 2D Covalent Organic Frameworks

    No full text
    Covalent organic frameworks (COFs), formed by reversible condensation of rigid organic building blocks, are crystalline and porous materials of great potential for catalysis and organic electronics. Particularly with a view of organic electronics, achieving a maximum degree of crystallinity and large domain sizes while allowing for a tightly π-stacked topology would be highly desirable. We present a design concept that uses the 3D geometry of the building blocks to generate a lattice of uniquely defined docking sites for the attachment of consecutive layers, thus allowing us to achieve a greatly improved degree of order within a given average number of attachment and detachment cycles during COF growth. Synchronization of the molecular geometry across several hundred nanometers promotes the growth of highly crystalline frameworks with unprecedented domain sizes. Spectroscopic data indicate considerable delocalization of excitations along the π-stacked columns and the feasibility of donor–acceptor excitations across the imine bonds. The frameworks developed in this study can serve as a blueprint for the design of a broad range of tailor-made 2D COFs with extended π-conjugated building blocks for applications in photocatalysis and optoelectronics

    Synchronized Offset Stacking: A Concept for Growing Large-Domain and Highly Crystalline 2D Covalent Organic Frameworks

    No full text
    Covalent organic frameworks (COFs), formed by reversible condensation of rigid organic building blocks, are crystalline and porous materials of great potential for catalysis and organic electronics. Particularly with a view of organic electronics, achieving a maximum degree of crystallinity and large domain sizes while allowing for a tightly π-stacked topology would be highly desirable. We present a design concept that uses the 3D geometry of the building blocks to generate a lattice of uniquely defined docking sites for the attachment of consecutive layers, thus allowing us to achieve a greatly improved degree of order within a given average number of attachment and detachment cycles during COF growth. Synchronization of the molecular geometry across several hundred nanometers promotes the growth of highly crystalline frameworks with unprecedented domain sizes. Spectroscopic data indicate considerable delocalization of excitations along the π-stacked columns and the feasibility of donor–acceptor excitations across the imine bonds. The frameworks developed in this study can serve as a blueprint for the design of a broad range of tailor-made 2D COFs with extended π-conjugated building blocks for applications in photocatalysis and optoelectronics
    corecore