1,380 research outputs found

    A Nonabelian (1,0)(1,0) Tensor Multiplet Theory in 6D

    Get PDF
    We construct a general nonabelian (1,0) tensor multiplet theory in six dimensions. The gauge field of this (1,0) theory is non-dynamical, and the theory contains a continuous parameter bb. When b=1/2b=1/2, the (1,0) theory possesses an extra discrete symmetry enhancing the supersymmetry to (2,0), and the theory turns out to be identical to the (2,0) theory of Lambert and Papageorgakis (LP). Upon dimension reduction, we obtain a general N=1{\cal N}=1 supersymmetric Yang-Mills theory in five dimensions. The applications of the theories to D4 and M5-branes are briefly discussed.Comment: 18 pages, published in JHEP. minor changes, references adde

    Superalgebra Realization of the 3-algebras in N=6, 8 Chern-Simons-matter Theories

    Full text link
    We use superalgebras to realize the 3-algebras used to construct N=6, 8 Chern-Simons-matter (CSM) theories. We demonstrate that the superalgebra realization of the 3-algebras provides a unified framework for classifying the gauge groups of the N \geq 5 theories based on 3-algebras. Using this realization, we rederive the ordinary Lie algebra construction of the general N=6 CSM theory from its 3-algebra counterpart, and reproduce all known examples as well. In particular, we explicitly construct the Nambu 3-bracket in terms of a double graded commutator of PSU(2|2). The N = 8 theory of Bagger, Lambert and Gustavsson (BLG) with SO(4) gauge group is constructed by using several different ways. A quantization scheme for the 3-brackets is proposed by promoting the double graded commutators as quantum mechanical double graded commutators.Comment: 29 pages, minor changes, published in JM

    Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories

    Full text link
    We present a superspace formulation of the D=3, N=4,5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action, and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new super-potential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4,5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All known N=4,5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie-algebra realization of symplectic 3-algebras.Comment: 37 pages, minor changes, published in PR
    • …
    corecore