657 research outputs found

    Finite time decoherence could be suppressed efficiently in photonic crystal

    Full text link
    The decoherence of two initially entangled qubits in anisotropic band gap photonic crystal has been studied analytically without Born or Markovian approximation. It is shown that the decoherence dynamics of two qubits in photonic crystal is greatly different from that of two qubits in vacuum or subjected to usual non-Markovian reservoir. The results also show that the finite time decoherence invoked by spontaneous emission could be suppressed efficiently and the entanglement of the Bell state possesses odd parity is more easily preserved in photonic crystal than that of the Bell state possesses even parity under the same condition. A store scheme for entangled particle pair is proposed.Comment: 4 pages, 7 figure

    Clustering analysis for gene expression data: a methodological review

    Get PDF
    Clustering is one of most useful tools for the microarray gene expression data analysis. Although there have been many reviews and surveys in the literature, many good and effective clustering ideas have not been collected in a systematic way for some reasons. In this paper, we review five clustering families representing five clustering concepts rather than five algorithms. We also review some clustering validations and collect a list of benchmark gene expression datasets

    Longitudinal spin excitations and magnetic anisotropy in antiferromagnetically ordered BaFe2As2

    Full text link
    We report on a spin-polarized inelastic neutron scattering study of spin waves in the antiferromagnetically ordered state of BaFe2As2. Three distinct excitation components are identified, with spins fluctuating along the c-axis, perpendicular to the ordering direction in the ab-plane, and parallel to the ordering direction. While the first two "transverse" components can be described by a linear spin-wave theory with magnetic anisotropy and inter-layer coupling, the third "longitudinal" component is generically incompatible with the local moment picture. It points towards a contribution of itinerant electrons to the magnetism already in the parent compound of this family of Fe-based superconductors.Comment: 4 pages, 4 figures, plus Supplemental Materia

    Tetra-μ-acetato-κ4 O:O′;κ3 O,O′:O;κ3 O:O,O′-bis­[(acetato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)europium(III)]

    Get PDF
    In the title centrosymmetric dinuclear complex, [Eu2(CH3CO2)6(C12H8N2)2], the EuIII atom is nine-coordinated by two N atoms from a 1,10-phenanthroline ligand and seven O atoms from five acetate ligands (two bidentate, three monodentate). The crystal structure is stabilized by π–π stacking inter­actions between the pyridine and benzene rings of adjacent mol­ecules, with a centroid–centroid distance of 3.829 (2) Å

    Effects of replacing dietary fishmeal with zymolytic black soldier fly larvae on the growth performance of the mud crab (<em>scylla paramamosain</em>) larvae

    Get PDF
    Black soldier fly have been shown to be one of the optimal alternatives to fishmeal, but there are few reports on the effects of zymolytic black soldier fly larvae (ZBSFL) on the growth and digestion of crustaceans. An 8-week feeding trial was conducted to evaluate the effects of different replacement levels of ZBFLS on growth performance, body composition, and digestive enzyme activity of the mud crab larvae. Four diets were formulated by replacing fishmeal with 0%, 5%, 10% and 15% ZBSFL in the basal diet. Crab larvae were randomly divided into four groups of three replicates each and fed twice daily. The results showed that the SR of crab larvae was higher than that of the no-substitution group when the substitution rate reached 5% (P < 0.05). There was no significant change in SR when the substitution rate was further increased. Weight growth rate and Specific growth rate were similar, both highest at 10% substitution ratio. The crude protein content of whole crab larvae gradually increased as the proportion of FM substituted by ZBSFL increased. The lipid content of whole crab larvae in the 5% substitution ratio group was significantly higher than that in all other groups (P < 0.05). Meanwhile. The activities of amylase, protease and lipase gradually increased. In this experiment, when the percentage of ZBSFL substitution for FM reached 10%, its growth performance was optimal, with higher SR, less negative effects and more balanced indicators in all aspects. When the substitution rate was further increased, it might increase the digestive burden of the crab and negatively affect its growth

    LC/MS Guided Isolation of Alkaloids from Lotus Leaves by pH-Zone-Refining Counter-Current Chromatography

    Get PDF
    The traditional methods used in natural product separation primarily target the major components and the minor components may thus be lost during the separation procedure. Consequently, it’s necessary to develop efficient methods for the preparative separation and purification of relatively minor bioactive components. In this paper, a LC/MS method was applied to guide the separation of crude extract of lotus (Nelumbo nucifera Gaertn.) leaves whereby a minor component was identified in the LC/MS analysis. Afterwards, an optimized pH-zone-refining CCC method was performed to isolate this product, identified as N-demethylarmepavine. The separation procedure was carried out with a biphasic solvent system composed of hexane-ethyl acetate-methyl alcohol-water (1:6:1:6, v/v) with triethylamine (10 mM) added to the upper organic phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase eluent. Two structurally similar compounds – nuciferine and roemerine – were also obtained from the crude lotus leaves extract. In total 500 mg of crude extract furnished 7.4 mg of N-demethylarmepavine, 45.3 mg of nuciferine and 26.6 mg of roemerine with purities of 90%, 92% and 96%, respectively. Their structures were further identified by HPLC/ESI-MSn, FTICR/MS and the comparison with reference compounds

    The effect of multiple thermal cycles on Ti-6Al-4V deposits fabricated by wire-arc directed energy deposition:Microstructure evolution, mechanical properties, and corrosion resistance

    Get PDF
    Thermal cycles have an important effect on the microstructure and properties of the components fabricated by wire-arc directed energy deposition (wire-arc DED). In this study, a Gleeble thermal-mechanical simulator was adopted to create closer-to-reality thermal cycles with the assistance of a numerical simulation model and experimental Ti-6Al-4V deposition. Step-by-step microstructure evolution, including αm, retained β, and GB α, microhardness gradual variation, and the corrosion resistance change before and after the entire thermal cycle were investigated. Therefore, combining phase orientation and high-magnification morphology, transformed and untransformed α that occurred in low- and medium-temperature thermal cycles can be distinguished. After the entire thermal cycle, αm laths coarsened from ∼1 µm to ∼1.2 µm, and the content of retained β phase became more and more. The αm formed around grain boundaries partially disappeared and was occupied by α laths from the inner grain. GB α was more continuously distributed along prior β grain boundaries due to its lower formation temperature during the subsequent thermal cycles that were occurring incomplete α→β transformation. The severe preferential orientation of α phases formed after the deposition and high-temperature thermal cycle was also alleviated through the twice low-temperature thermal cycles. Besides, the microhardness decreased from 318.78 ± 7.5 HV to 285.17 ± 5.3 HV after the high-temperature thermal cycle but eventually increased significantly to 330.5 ± 6.4 HV after experiencing the final low-temperature thermal cycle. The corrosion resistance decreased after the entire thermal cycle, indicating a performance difference between the top and bottom regions of the Ti-6Al-4 V component fabricated by wire-arc DED.</p
    corecore