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ABSTRACT

Clustering is one of most useful tools for the microarray gene ex-
pression data analysis. Although there have been many reviews and
surveys in the literature, many good and effective clustering ideas
have not been collected in a systematic way for some reasons. In this
paper, we review five clustering families representing five clustering
concepts rather than five algorithms. We also review some clustering
validations and collect a list of benchmark gene expression datasets.

Index Terms— Clustering algorithm, Clustering validation, Mi-
croarray gene expression data analysis.

1. INTRODUCTION

Microarray is a comparatively new technology and a chip-based high
throughput technology to investigate the expression levels of thou-
sands of genes simultaneously, compared with the traditional ap-
proach to genomic research. Expression data are collected via either
experiments in a time series during a biological process or exper-
iments of different tissue samples [1]. A gene expression dataset
is organized in a expression matrix, where the rows represent the
expression profiles or patterns of genes, and the columns represent
the expression profiles of samples. Data preprocessing is required
before any clustering analysis, because the original gene expres-
sion matrix contains noise, missing values and systematic variations.
By analysing the gene expression across multiple experiments, co-
regulated gene with similar biological functions and their interac-
tions, or their characteristic of the states, diseases, or phenotypes
represented by groups of samples may be discovered.

Clustering, also known as unsupervised learning, has been used
for decades in many fields, such as image processing, data mining
and artificial intelligence [2], and in recent years, has benefited mi-
croarray gene expression data analysis in genomic research [3]. The
goal of the clustering analysis is to group individual objects or sam-
ples in a population within which the objects are more similar to
each other than those in other clusters. Generally speaking, to study
or design a clustering analysis for an application, one has to consider
three issues: 1) the measurements of the dissimilarity (or similarity),
2) the clustering algorithms, 3) the clustering validations. There has
been a rich literature on clustering analysis over the past decades and
all these three issues have been comprehensively discussed in [2, 3].
Especially in [3], the literature of clustering analysis for gene ex-
pression data have been reviewed and discussed.

The project (Ref. NIHR-RP-PG-0310-1004-AN) is supported by Na-
tional Institute for Health Research (NIHR), UK.

There were eight similarity and dissimilarity measures listed
in [2], namely, Minkowski distance, Euclidean distance, City-block
distance, Sup distance, Mahalanobis distance, Pearson correlation,
Point symmetry distance, Cosine similarity, which have been widely
used in various applications. In [3], Euclidean distance and Pear-
son correlation were claimed to be effective similarity measures for
gene expression data. Furthermore, two additional measures, namely
Jackknife correlation and Spearman’s rank-order correlation, were
discussed to cope with the situations of outliers and non-Gaussian
distributions, respectively. In this paper, we will not discuss the
dissimilarity and similarity measures but use the operators D(·) for
dissimilarity and S(·) for similarity instead of a specific measure
when we study clustering algorithms. Readers who are interested in
more details are advised to refer to [2, 3] and the references therein.

In this paper, we focus our attention on reviewing and discussing
five families of clustering algorithms, some clustering validations
and some benchmark microarray gene expression datasets. As it has
been a few years since those two comprehensive review papers [2,3]
were published, many new and effective algorithms have been pro-
posed but were not reviewed. Especially, for gene expression data
analysis, both the clustering algorithms and validations have grown
beyond the horizon of [3]. This paper can be viewed as a comple-
mentary counterpart to make the literature review in this field some-
how up-to-data. Excluding some popular clustering algorithms, say
k-means, k-medoids, hierarchical, model-based clustering etc., we
will discuss five different families of clustering algorithms including
fuzzy clustering, kernel-based clustering, self-organizing clustering,
self-splitting and merging clustering and ensemble clustering. We
will also review some clustering validation methods used for gene
expression data analysis, which were not included in [3]. Further-
more, we will collect a list of benchmark gene expression datasets to
which clustering analysis has commonly been applied.

The rest of the paper is organized as follows. In Sec. 2 we review
five families of clustering algorithms, sequentially, fuzzy clustering,
kernel-based clustering, self-organizing clustering, self-splitting
and merging clustering and ensemble clustering. Sec. 3 reviews the
clustering validations. The benchmark gene expression datasets are
listed in Sec. 4. Finally, concluding remarks are made in Sec. 5.

2. CLUSTERING ALGORITHMS

The five clustering families, which are reviewed in this section, rep-
resent five different methodologies of clustering, though there may
exist some commonalities in their implementation. Throughout the
paper, we suppose that we are going to partition the gene expres-
sion dataset X = {xn|1 ≤ n ≤ N}, where xn ∈ RM×1 denotes
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Table 1. The procedure of FCM
STEP 1:
Initialize the centroids of clusters {ck|k = 1, ...,K} randomly or
based on some prior knowledge if available;
STEP 2:
Update the membership matrix U by

ukn = 1/

[∑K
k′=1

(
D(xn,ck′ )
D(xn,ck))

)2/(1−m)
]

, k = 1, ...,K and n =

1, ..., N .
STEP 3:
Update the centroids of clusters {ck|k = 1, ...,K} by

ck(t) =

(∑N
n=1 u

m
k,nxn

)

(∑N
n=1 u

m
k,n

) , for k = 1, ...,K.

STEP 4:
Repeat STEP 2 and 3 until ‖C(t)−C(t− 1)‖ < ε, where ε is a
small positive number.

the n-th gene, M is the number of samples (features or dimensions)
and N is the number of genes. Consider that there are K clusters
in a given dataset and each clustering algorithm provides a partition
matrix UK×N , where the entry uk,n ∈ [0, 1] represents the mem-
bership coefficient of n-th gene in the k the cluster.

2.1. Fuzzy Clustering

Fuzzy clustering is a concept that relaxes the restriction of crisp clus-
tering, which assigns every object exactly in one clusters, by charac-
terizing the membership of each sample point in all the clusters with
a membership function which ranges between zero and one. Addi-
tionally, the sum of the memberships for each sample point must be
unity [4]. The properties of the partition matrix is mathematically
expressed by

(a) uk,n ∈ [0, 1], 1 ≤ n ≤ N, 1 ≤ k ≤ K,

(b)
∑K

k=1 uk,n = 1, 1 ≤ n ≤ N,

(c) 0 <
∑N

n=1 uk,n < N, 1 ≤ k ≤ K.

An example of fuzzy clustering is the fuzzy c-means (FCM) [5],
which is fuzzy counterpart of the k-means. FCM aims to minimize
the cost function, which is mathematically expressed by

J (U ,X) =
K∑

k=1

N∑

n=1

(uk,n)
mD(xn, ck), (1)

where m ∈ [1,∞) is the fuzzification parameter. D(xn, ck) is the
dissimilarity measure between the n-th gene, xn, and the centroid of
the k-th cluster, ck. Similar to k-means, the cost function (1) can be
minimised with an iterative procedure that updates the partition ma-
trix and the centroids of clusters alternately. Since many genes may
participate in more than one function in the biological process, the
fuzzy clustering has obvious advantage to identify some genes co-
regulating with more than one cluster of genes. Many applications
of FCM and its enhancements and modifications for gene expres-
sion data have been developed [6–10]. The procedure of FCM is
summarized in Table 1. There are also many other fuzzy clustering
approaches, for example, fuzzy self-organizing map (FSOM) [11],
fuzzy adaptive resonance theory (FART) [12] and fuzzy support vec-
tor machine (FSVM) [13].

2.2. Kernel-based Clustering

Kernel-based clustering, which shares similar idea with support vec-
tor machines (SVM), constructs a hyperplane to separate the pat-
terns. These patterns are nonlinearly transformed from a set of non-
linearly separable patterns into a higher-dimensional feature space
to be linear separable [14, 15]. At the core of the kernel-based clus-
tering lies the difficulty of explicitly constructing the nonlinear map-
ping, Φ(·), which is sometime infeasible; but now it can be overcome
by a kernel trick. The kernel trick is a way of mapping patterns from
a input space into a feature space without having to compute the
mapping explicitly, in the hope that the patterns will gain meaning-
ful linear structure in the feature space, mathematically expressed
as

κ(xi,xj) =Φ( xi)
TΦ(xj), (2)

where (·)T is the transpose operator. Thus, a straightforward way to
transform the calculation of Euclidean distance in the feature space
into the kernel version is to use the kernel trick as follows

Dκ
E(Φ(xi),Φ(xj)) = ‖Φ(xi)− Φ(xj)‖2 (3)

= ‖Φ(xi)‖2 + ‖Φ(xj)‖2 − 2Φ(xi)
TΦ(xj)

= κ(xi,xi) + κ(xj ,xj)− 2κ(xi,xj),

and the kernel version of modified Pearson correlation is given by
[16]

Sκ
P (Φ(xi),Φ(xj)) =

Φ(xi)
TΦ(xj)√

Φ(xi)TΦ(xi)
√

Φ(xj)TΦ(xj)
(4)

=
κ(xi,xj)√

κ(xi,xi)
√

κ(xj ,xj)
.

Kernel k-means (or kernel FCM) is kernel counterpart of the k-
means (or FCM) [17], whose core part is to calculate the distance
between the objects and the centroids of clusters in the feature space

Dκ
E(Φ(xi), c

Φ
k ) = ‖Φ(xi)−

1
Nk

N∑

l=1

um
k,lΦ(xl)‖2 (5)

= κ(xi,xi)−
1
Nk

N∑

l=1

um
k,lκ(xi,xl)

+
1
N2

k

N∑

l=1

N∑

n=1

um
k,lu

m
k,nκ(xl,xn),

where Nk =
∑N

l=1 u
m
kl. For crisp kernel k-means, the elements

in partition matrix are either zero or one and m = 1; for the ker-
nel FCM, the partition matrix is the one described in Sec. 2.1 and
m ∈ [1,∞). The procedure of kernel k-means and kernel FCM
is summarized in Table 2. Other kernel-based algorithms including
kernel hierarchical and kernel principle component analysis can be
found in [16, 18].

2.3. Self Organizing Clustering

The Kohonen self-organizing map (SOM) is one of the most popular
unsupervised clustering algorithms [19, 20] and has been reviewed
in many references [2, 3]. There is another algorithm, called self-
organizing oscillator networks (SOON) [21], which also belongs
to self-organizing clustering family. The so-called self-organizing
means that all the prototypes are attracted to the input patterns in an
adaptive fashion. Here, we focus on the SOON algorithm, which



Table 2. The procedure of kernel k-means and kernel FCM
STEP 1:
Initialize a K-partition in the feature space;
STEP 2:
Calculate Dκ

E(Φ(xn), c
Φ
k ) for n = 1, ..., N and k = 1, ...,K.

STEP 3:
Update the membership matrix U(t) by

uk,n =

{
1 Dκ

E(Φ(xn), c
Φ
k ) < Dκ

E(Φ(xn), c
Φ
k′)

0 otherwise
, for kernel k-

means;

uk,n = 1/

[
∑K

k′=1

(
Dκ

E(Φ(xi),c
Φ
k′ )

Dκ
E(Φ(xi),c

Φ
k )

)2/(1−m)
]

, for kernel FCM.

STEP 4:
Repeat STEP 2 and 3 until

∑K
k=1 D

κ
E(c

Φ
k (t), c

Φ
k (t − 1)) < ε,

where ε is a small positive number.

makes use of a biological fact that fireflies flash together exhibiting
a synchronized firing in groups that physically close to each other.
The basic unit of clustering in SOON is an integrate and fire (IF)
oscillator representing each object in the dataset.

Suppose that O = {O1, ...,ON} is a set of N oscillators, where
each oscillator Oi is characterized by a phase φi and a state variable
si, given by

si = fi(φi), i = 1, ...,K, (6)

where each function fi : [0, 1] &→ [0, 1] is smooth. In [21], the
function f(φ) was

f(φ) =
1
b
ln

[
1 +

(
eb − 1

)
φ
]
.

Whenever si reaches a threshold at si = 1, the i-th oscillator fires
and instantaneously reset to zero, following which the cycle repeats.
The firing of all other oscillators Oj (j (= i) can be affected by i-th
oscillator by

sj(t
+) = B(sj(t) + εi(φj)), (7)

where B(·) is a limiting function to guarantee that sj(t) is confined
to [0, 1], mathematically expressed by

B(s) =






s if 0 ≤ s ≤ 1;
0 if s < 0;
1 if s > 1.

(8)

The coupling strength of the i-th oscillator at a given phase φj ,
εi(φj), is the most important concept of the SOON algorithm, math-
ematically expressed by

εi(φj) =






CE

[
1−

(
D(Oi,Oj)

δ0

)2
]
, if D(Oi,Oj) ≤ δ0;

−CI

[(
D(Oi,Oj)−δ0

δ1−δ0

)2
]
, if δ0 < D(Oi,Oj) ≤ δ1;

−CI , otherwise,
(9)

where δ0 and δ1 are limit distances and δ1 is set to be five times δ0.
CE and CI are the maximum excitatory coupling and the maximum
inhibitory coupling, respectively.

To avoid the need to compute and store the pairwise distances
between any pair of objects, prototypes β = {β1, ...,βK} are used
to represent clusters of the object in SOON-2, which is summarized
in Table 3.

Table 3. The procedure of SOON-2
STEP 1:
Initialize a phases φi randomly for i = 1, ..., N ;
Set K, and initialize the Prototypes βk randomly for k = 1, ...,K;
STEP 2:

Identify the next oscillator to fire, {Oi : φi = maxj φj};
Identify the close prototype to the oscillator Oi &→ βk;
Compute D(βk,Oj) for ∀j ∈ [1, N ];
Bring φi to threshold, and adjust other phases
φj = φj + (1− φi) for ∀j ∈ [1, N ];

STEP 3:
for all oscillators Oj (j (= i) do

Compute state variable sj ;
Compute coupling strength εi(φj);
Adjust state variable sj using (7);
Compute compute new phase using φj = f−1(sj);

end for
Identify synchronized oscillators and reset their phases;
Update prototype βk;
STEP 4:
Repeat STEP 2 and 3 until synchronized group stabilize.

2.4. Self Splitting and Merging Clustering

Self-splitting and merging clustering is an idea in which without set-
ting the number of clusters a priori, the algorithm will converge to
a partitioning which reveals the true number of clusters and pro-
vides fairly accurate clustering results. Recently, some self splitting-
merging clustering algorithms have been developed for both gen-
eral purpose clustering [22, 23] and gene expression data analysis
[24]. A competitive learning paradigm, called one-prototype-take-
one-cluster (OPTOC) [22], was proposed in the self-splitting cluster-
ing algorithm. There are two advantages of the OPTOC that, firstly,
it is not sensitive to initialization, and secondly, in many cases, it is
able to find natural clusters. However, its ability to find the natural
clusters depends on the determination of suitable threshold, which
is difficult [24]. Being aware of the shortcoming of the OPTOC, a
self-splitting-merging competitive learning (SSMCL) algorithm [24]
based on the OPTOC paradigm was developed for gene expression
analysis. The SSMCL initially over-clusters the whole dataset using
the OPTOC principle and then merge the groups based on the second
order statistical characteristics. However, although the number of
clusters can be initially set to any value lager than the number of nat-
ural clusters, the SSMCL still needs to set it as close to the number of
natural clusters as possible, otherwise, too much computing power
will be wasted due to the unnecessary over-clustering and merging.
With the similar principle as the SSMCL, over-clustering and merg-
ing, a cohesion-based self-merging (CSM) algorithm, which was re-
ported in [23] to combine the k-means and hierarchical clustering,
also faces the same problem of setting the initial number of clusters.

Here, we briefly introduce the OPTOC competitive learning
paradigm. For each prototype, an online learning vecoter called
asymptotic property vector (APV), Ak, is assigned to guide the
learning the k-th prototype Pk. The APV is adapted according to

Ak = Ak +
1

nk
A

· δk · (xn −Ak)Θ(Pk,Ak,xn), (10)

where

nk
A = nk

A + δk ·Θ(Pk,Ak,xn),

Θ(a, b, c) =

{
1 if D(a, b) ≤ D(a, c)
0 otherwise , (11)



and
δk =

[
D(Pk,Ak)

D(Pk,xn) +D(Pk,Ak)

]
. (12)

The learning process for Pk is given by

Pk = Pk + αk · (xn − Pk)Θ(Pk,Ak,xn) (13)

where

αk =

[
1 +

D(Pk,xn)
D(Pk,Ak)

]−2

. (14)

The above OPTOC competitive learning paradigm is an effective
technique to implement the self splitting and merging clustering.

2.5. Ensemble Consensus Clustering

Robustness is one of the desired properties of clustering algorithms,
However, there is no perfect method which always gives the best
results for all types of datasets. In order to enhance the robustness
of clustering, the idea of ensemble consensus clustering has been
proposed where the partitioning results of many clustering experi-
ments are combined [25–33]. These partitioning results may come
from different clustering algorithms, or same clustering algorithm
with different parameters and initializations, or same clustering al-
gorithm to different re-sampled permutations of the target dataset.

Although cluster ensembles have been regarded as promising
methods, many obstacles have been found while combining results
from different experiments. Due to the fact that clustering is unsu-
pervised, one main problem is that it is not a straightforward task to
map a specific cluster from one of the clustering results to its corre-
sponding cluster from another clustering result. Another problem is
that different clustering results may give different numbers of clus-
ters while the correct number of clusters in unknown.

Consensus function method has been employed as an essential
step in cluster ensembles. For R partitions {U1, ...,UR}, the opti-
mal consensus partition U∗ is the one which is the most similar to
all of them and is mathematically given by

U∗ = argmax
∀P

R∑

j=1

Γ(U ,U j) (15)

where Γ(·, ·) measures the similarity between any two partitions.
This optimization problem has been noted as an NP-complete prob-
lem. There are many methods for consensus function, including
relabelling and voting [33], co-association matrix [34], hyper-
graph methods [25], weighted kernel consensus functions [31],
non-negative matrix factorization [32], greedy algorithms [27],
etc. In all of the aforementioned methods, there are at least
three steps to implement the ensemble consensus clustering as
follows:

Partitions generation: R different clustering experiments are
carried out to generate R partitions. The results of these parti-
tions are all presented in a consistent form known as the partition
matrix.
Relabelling: The clusters in the generated partitions are rela-
belled such that the corresponding clusters from different parti-
tions are aligned.
Final consensus partition matrix generation: The relabelled
partition matrices are ”assembled” to generate the final consen-
sus partition matrix.

Among these three steps, Relabelling and Final consensus par-
tition matrix generation are the most essential parts. An example of
relabelling is detailed in the steps below:

(a) A dissimilarity distance matrix SK×K is constructed by cal-
culating the pairwise distance between the rows (clusters) of the
matrix U and the rows of the reference matrix Uref .
(b) The minimum value in each of the columns is found.
(c) The maximum value of these minima is identified then the
rows (clusters) from U and Uref which correspond to this simi-
larity value are mapped.
(d) The row and the column which show the aforementioned value
are deleted from the similarity matrix.
(e) If all of the K rows from U and Uref are mapped, the al-
gorithm terminates, otherwise it goes back to step (2) with the
reduced similarity matrix.

It is suggested that an intermediate consensus partition matrix
U int(k) is initialized with the values of the first partition U1, and
then the other partitions are relabelled and fused with this interme-
diate matrix one by one while considering it as the reference at each
step. Mathematically, let Û

r
be the relabelled partition matrix of

the partition Ur and let U int(k) be the intermediate partition ma-
trix after the k-th stage, i.e. after relabelling and fusing the parti-
tions {U1, · · · ,Uk}. Let the function Relabel(U ,Uref ) denote
relabelling the partition matrix U by considering Uref as the ref-
erence partition. Equation (3) shows how the intermediate partition
matrix can be calculated by the normal approach and the recursive
approach:

U int(k) =
1
k

k∑

r=1

Û
r
=

1
k
Û

k
+

(k − 1)
k

U int(k−1). (16)

An example of generating the final consensus partition ma-
trix is achieved by following the algorithm shown in the following
steps:

(1) U int(1) = U1

(2) For k = 2 to R

a. Û
k
= Relabel(Uk,U int(k−1))

b. U int(k) = 1
k Û

k
+ k−1

k U int(k−1)

(3) U∗ = U int(R).

3. CLUSTERING VALIDATION

Since clustering is unsupervised classification, it is more difficult
to assess than a supervised approach. Thus, the task of assessing
the results of clustering algorithms can be as important as the clus-
tering algorithms themselves. There are two functional advantages
of employing the clustering validations: firstly, they can validate a
clustering algorithm by comparing with other algorithms; secondly,
some validity indices can provide an estimate of the number of clus-
ters, which is crucial information for the clustering analysis. In this
section, we will review some existing clustering validations.

3.1. Parametric Validity index

A parametric validity index (PVI), which employs two tunable pa-
rameters α and β to to control the proportions of objects that are
involved in the calculation of the intra-cluster dissimilarities and the
inter-cluster dissimilarities, was proposed in [35]. For each clus-
ter, three spaces are defined, namely the inner space, the intra outer
space and the inter outer space, representing the objects inside the
cluster chosen for the calculation of both the intra-cluster dissim-
ilarities and the inter-cluster dissimilarities, the objects inside the
cluster chosen for the calculation of only the intra-cluster dissimi-
larities, and the objects outside the cluster chosen for the calculation



of only the inter-cluster dissimilarities, respectively. Let N i
k, Nao

k,
Neok denote the numbers of objects in the inner space, the intra outer
space and the inter outer space, respectively, for the k-th cluster. The
fractions, α and β, are used to control N i

k, Nao
k, Neok, which can be

expressed as

N i
k = *αNk+, Nao

k = *βNk+, Neok = *β(N −Nk)+, (17)

where Nk is the number of the objects in the k-th cluster, N is the
number of all objects in the dataset and *·+ is the ceiling operator.
Both α and β can be chosen from the range of (0,1]. Thus, the
inner space is Ak = {aa

k|a = 1, ..., N i
k}, the intra outer space is

Ba
k = {ba,bk |b = 1, ..., Nao

k}, and the inter outer space is Ca
k =

{ca,ck |c = 1, ..., Neok}. The PVI is obtained by

PVI(K,α,β ) =
K∑

k=1

Ni
k∑

a=1

(
Deak
Daa

k

)
, (18)

where

Daa
k =

∑Nao
k

b=1 D(aa
k,ba,b

k )

Nao
k

Deak =
∑Neok

c=1 D(aa
k,ca,c

k )

Neok
. (19)

3.2. Other Indices

In this section, we list five other existing validity indices. The first
is the VI [36]. The validity index VI is the ratio of the inter-cluster
separation measures and the intra-cluster scatter measures, which is
mathematically expressed as

VI(K) =

∑K
i=1 Iei∑K
i=1 Iai

, (20)

where K is the number of clusters. The VI employs Iai, the largest
dissimilarity of the minimum spanning tree (MST) for cluster i, as
the intra-cluster scatter and Iei = minK

j=1,j %=i Ieij , where Ieij is
the the largest dissimilarity of the MST for cluster i and cluster j, as
the inter-cluster separation.

The second is the DI [37], which is written as

DI(K) = min
1≤i≤K

{
min

1≤j≤K

{
δ(Ci, Cj)

max1≤k≤K{∆(Ck)}

}}
, (21)

where δ(Ci, Cj) = min ‖xi − xj‖2 is the maximum distance be-
tween cluster i and cluster j, ∆(Ck) is the largest intra-cluster sepa-
ration of cluster k. The third is the II [38], which is written as

II(K) =

(
1
K

× E1

EK
×DK

)P

, (22)

where E1 =
∑

j ‖xj − c‖2 where c is the centroid of the whole
dataset, EK =

∑K
k=1

∑
j∈Ck

‖xj − ck‖2, DK = maxK
i,j ‖ci −

cj‖2 and power P is constant, which is 2 in our experiments. The
fourth is the GI [39], which is expressed as

GI(K) = max
1≤k≤K

{
(2

∑M
m=1

√
λmk)

2

min1≤j≤K ‖ui − uj‖2

}
, (23)

where M is the number of dimensions, λmk are the eigenvalues of
the covariance matrix of the k-th cluster. Note that the closest GI

value to zero suggests the best number of clusters. The fifth is the
CH [40] which is given by

CH(K) =

[∑K
k=1 nk‖ck−u‖2

K−1

]

[∑K
k=1

∑nk
i=1 ‖xi−ck‖2
n−K

] , (24)

where nk is the number of memberships in the cluster k and n is the
total number of the objects. The performance of above five clustering
validations has been compared for gene expression dataset in [41]

4. DATASETS

There have been many benchmark gene expression datasets in the
literature. People can either test their new clustering algorithms us-
ing these datasets or employ their clustering algorithms to investi-
gate these datasets and provide new points of view in the biological
context.

(a) The synthetic data set models gene expression data with
cyclic behavior. Classes are modelled as genes that have peak times
over the times course as presented in [42, 43].

(b) The leukemia dataset [44] consists of 38 bone marrow sam-
ples obtained from acute leukemia patients at time of diagnosis.
The samples include 11 acute myeloid leukemia (AML) samples,
8 T-lineage acute lymphoblastic leukemia (ALL) samples and 19 B-
lineage ALL samples. There are 999 genes in the dataset.

(c) The yeast cell cycle dataset was published by Cho et al. [45].
It consists of more than 6000 genes over 17 time points taken at 10
minutes intervals, where 383 genes were identified and these demon-
strated consistent periodic changes in transcript level. It was com-
monly believed that the time course was divided into early G1, late
G1, S, G2, and M phases, those 383 genes would peak at one of the
five phases. In [42], a subset with 384 genes was investigated.

(d) The lymphoma dataset have three most prevalent adult lym-
phoid malignancies [46].

(e) The liver cancer dataset is available in [47].

5. CONCLUSIONS AND FUTURE WORK

In this paper, we systematically reviewed five clustering families rep-
resenting five different clustering concepts. We also reviewed some
clustering validations and collected a list of benchmark gene expres-
sion datasets. We are implementing algorithms in all of the afore-
mentioned clustering families and investigating their performance in
all of listed benchmark gene expression datasets. The performance
comparison and validation will be presented in a future publication
and the forthcoming conference.
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