24 research outputs found

    Effects of pretreatments of Napier Grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics

    Get PDF
    The depletion of fossil fuel reserves has led to increasing interest in liquid bio-fuel from renewable biomass. Biomass is a complex organic material consisting of different degrees of cellulose, hemicellulose, lignin, extractives and minerals. Some of the mineral elements tend to retard conversions, yield and selectivity during pyrolysis processing. This study is focused on the extraction of mineral retardants from Napier grass using deionized water, dilute sodium hydroxide and sulfuric acid and subsequent pyrolysis in a fixed bed reactor. The raw biomass was characterized before and after each pretreatment following standard procedure. Pyrolysis study was conducted in a fixed bed reactor at 600 o�C, 30 �C/min and 30 mL/min N2 flow. Pyrolysis oil (bio-oil) collected was analyzed using standard analytic techniques. The bio-oil yield and characteristics from each pretreated sample were compared with oil from the non-pretreated sample. Bio-oil yield from the raw sample was 32.06 wt% compared to 38.71, 33.28 and 29.27 wt% oil yield recorded from the sample pretreated with sulfuric acid, deionized water and sodium hydroxide respectively. GC–MS analysis of the oil samples revealed that the oil from all the pretreated biomass had more value added chemicals and less ketones and aldehydes. Pretreatment with neutral solvent generated valuable leachate, showed significant impact on the ash extraction, pyrolysis oil yield, and its composition and therefore can be regarded as more appropriate for thermochemical conversion of Napier grass

    Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases

    Get PDF
    OBJECTIVE: Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies. METHODS: We meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases. RESULTS: Our analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study. CONCLUSIONS: We have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs

    Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia

    No full text
    In the current debate on the magnitude of modern-day climate change, there is a growing appreciation of the importance of long, high-resolution proxies of past climate1-3. Such records provide an indication of natural (pre-anthropogenic) climate variability, either singly at specific geographical locations or in combination on continental and perhaps even hemispheric scales4. There are, however, relatively few records that are well dated, of high resolution and of verifiable fidelity in terms of climate response, and conspicuously few that extend over a thousand years or more5. Here we report a tree-ring-based reconstruction of mean summer temperatures over the northern Urals since AD 914. This record shows that the mean temperature of the twentieth century (1901-90) is higher than during any similar period since AD 914
    corecore