15 research outputs found

    Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to their well-documented ocular therapeutic effects, glucocorticoids (GCs) can cause sight-threatening side-effects including ocular hypertension presumably via morphological and biochemical changes in trabecular meshwork (TM) cells. In the present study, we directly compared the glucocorticoid receptor (GR) potency for dexamethasone (DEX), fluocinolone acetonide (FA) and triamcinolone acetonide (TA), examined the expression of known GRα and GRβ isoforms, and used gene expression microarrays to compare the effects of DEX, FA, and TA on the complete transcriptome in two primary human TM cell lines.</p> <p>Methods</p> <p>GR binding affinity for DEX, FA, and TA was measured by a cell-free competitive radio-labeled GR binding assay. GR-mediated transcriptional activity was assessed using the GeneBLAzer beta-lactamase reporter gene assay. Levels of GRα and GRβ isoforms were assessed by Western blot. Total RNA was extracted from TM 86 and TM 93 cells treated with 1 μM DEX, FA, or TA for 24 hr and used for microarray gene expression analysis. The microarray experiments were repeated three times. Differentially expressed genes were identified by Rosetta Resolver Gene Expression Analysis System.</p> <p>Results</p> <p>The GR binding affinity (IC<sub>50</sub>) for DEX, FA, and TA was 5.4, 2.0, and 1.5 nM, respectively. These values are similar to the GR transactivation EC<sub>50 </sub>of 3.0, 0.7, and 1.5 nM for DEX, FA, and TA, respectively. All four GRα translational isoforms (A-D) were expressed in TM 86 and TM 93 total cell lysates, however, the C and D isoforms were more highly expressed relative to A and B. All four GRβ isoforms (A-D) were also detected in TM cells, although GRβ-D isoform expression was lower compared to that of the A, B, or C isoforms. Microarray analysis revealed 1,968 and 1,150 genes commonly regulated by DEX, FA, and TA in TM 86 and TM 93, respectively. These genes included RGC32, OCA2, ANGPTL7, MYOC, FKBP5, SAA1 and ZBTB16. In addition, each GC specifically regulated a unique set of genes in both TM cell lines. Using Ingenuity Pathway Analysis (IPA) software, analysis of the data from TM 86 cells showed that DEX significantly regulated transcripts associated with RNA post-transcriptional modifications, whereas FA and TA modulated genes involved in lipid metabolism and cell morphology, respectively. In TM 93 cells, DEX significantly regulated genes implicated in histone methylation, whereas FA and TA altered genes associated with cell cycle and cell adhesion, respectively.</p> <p>Conclusion</p> <p>Human trabecular meshwork cells in culture express all known GRα and GRβ translational isoforms, and GCs with similar potency but subtly different chemical structure are capable of regulating common and unique gene subsets and presumably biologic responses in these cells. These GC structure-dependent effects appear to be TM cell-lineage dependent.</p

    Cystatin A, a Potential Common Link for Mutant Myocilin Causative Glaucoma

    Get PDF
    Myocilin (MYOC) is a 504 aa secreted glycoprotein induced by stress factors in the trabecular meshwork tissue of the eye, where it was discovered. Mutations in MYOC are linked to glaucoma. The glaucoma phenotype of each of the different MYOC mutation varies, but all of them cause elevated intraocular pressure (IOP). In cells, forty percent of wild-type MYOC is cleaved by calpain II, a cysteine protease. This proteolytic process is inhibited by MYOC mutants. In this study, we investigated the molecular mechanisms by which MYOC mutants cause glaucoma. We constructed adenoviral vectors with variants Q368X, R342K, D380N, K423E, and overexpressed them in human trabecular meshwork cells. We analyzed expression profiles with Affymetrix U133Plus2 GeneChips using wild-type and null viruses as controls. Analysis of trabecular meshwork relevant mechanisms showed that the unfolded protein response (UPR) was the most affected. Search for individual candidate genes revealed that genes that have been historically connected to trabecular meshwork physiology and pathology were altered by the MYOC mutants. Some of those had known MYOC associations (MMP1, PDIA4, CALR, SFPR1) while others did not (EDN1, MGP, IGF1, TAC1). Some, were top-changed in only one mutant (LOXL1, CYP1B1, FBN1), others followed a mutant group pattern. Some of the genes were new (RAB39B, STC1, CXCL12, CSTA). In particular, one selected gene, the cysteine protease inhibitor cystatin A (CSTA), was commonly induced by all mutants and not by the wild-type. Subsequent functional analysis of the selected gene showed that CSTA was able to reduce wild-type MYOC cleavage in primary trabecular meshwork cells while an inactive mutated CSTA was not. These findings provide a new molecular understanding of the mechanisms of MYOC-causative glaucoma and reveal CSTA, a serum biomarker for cancer, as a potential biomarker and drug for the treatment of MYOC-induced glaucoma

    Network analysis of human glaucomatous optic nerve head astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Astrocyte activation is a characteristic response to injury in the central nervous system, and can be either neurotoxic or neuroprotective, while the regulation of both roles remains elusive.</p> <p>Methods</p> <p>To decipher the regulatory elements controlling astrocyte-mediated neurotoxicity in glaucoma, we conducted a systems-level functional analysis of gene expression, proteomic and genetic data associated with reactive optic nerve head astrocytes (ONHAs).</p> <p>Results</p> <p>Our reconstruction of the molecular interactions affected by glaucoma revealed multi-domain biological networks controlling activation of ONHAs at the level of intercellular stimuli, intracellular signaling and core effectors. The analysis revealed that synergistic action of the transcription factors AP-1, vitamin D receptor and Nuclear Factor-kappaB in cross-activation of multiple pathways, including inflammatory cytokines, complement, clusterin, ephrins, and multiple metabolic pathways. We found that the products of over two thirds of genes linked to glaucoma by genetic analysis can be functionally interconnected into one epistatic network via experimentally-validated interactions. Finally, we built and analyzed an integrative disease pathology network from a combined set of genes revealed in genetic studies, genes differentially expressed in glaucoma and closely connected genes/proteins in the interactome.</p> <p>Conclusion</p> <p>Our results suggest several key biological network modules that are involved in regulating neurotoxicity of reactive astrocytes in glaucoma, and comprise potential targets for cell-based therapy.</p
    corecore