23 research outputs found

    Long-term cognitive outcomes in tuberous sclerosis complex.

    Get PDF
    AIM: To investigate the interdependence between risk factors associated with long-term intellectual development in individuals with tuberous sclerosis complex (TSC). METHOD: The Tuberous Sclerosis 2000 Study is a prospective longitudinal study of individuals with TSC. In phase 1 of the study, baseline measures of intellectual ability, epilepsy, cortical tuber load, and mutation were obtained for 125 children (63 females, 62 males; median age=39mo). In phase 2, at an average of 8 years later, intellectual abilities were estimated for 88 participants with TSC and 35 unaffected siblings. Structural equation modelling was used to determine the risk pathways from genetic mutation through to IQ at phase 2. RESULTS: Intellectual disability was present in 57% of individuals with TSC. Individuals without intellectual disability had significantly lower mean IQ compared to unaffected siblings, supporting specific genetic factors associated with intellectual impairment. Individuals with TSC who had a slower gain in IQ from infancy to middle childhood were younger at seizure onset and had increased infant seizure severity. Structural equation modelling indicated indirect pathways from genetic mutation, to tuber count, to seizure severity in infancy, through to IQ in middle childhood and adolescence. INTERPRETATION: Early-onset and severe epilepsy in the first 2 years of life are associated with increased risk of long-term intellectual disability in individuals with TSC, emphasizing the importance of early and effective treatment or prevention of epilepsy. WHAT THIS PAPER ADDS: Intellectual disability was present in 57% of individuals with tuberous sclerosis complex (TSC). Those with TSC without intellectual disability had significantly lower mean IQ compared to unaffected siblings. Earlier onset and greater severity of seizures in the first 2 years were observed in individuals with a slower gain in intellectual ability. Risk pathways through seizures in the first 2 years predict long-term cognitive outcomes in individuals with TSC

    Analysis of GLRA1 in hereditary and sporadic hyperekplexia: A novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis

    No full text
    Hyperekplexia is a rare condition characterised by the presence of neonatal hypertonia and an exaggerated startle response. Mutations have been described in GLRA1, the gene encoding the alpha 1 subunit of the glycine receptor, in dominant families with hyperekplexia and in a single sporadic case, thought to represent an autosomal recessive form of the disease. In this study the coding region of the GLRA1 was analysed in eight probands with hyperekplexia by restriction digest and sequencing. Two familial cases were found to possess the previously described G1192A (R271Q) mutation in exon 6. In an additional family in which hyperekplexia cosegregates with spastic paraparesis, a novel A to G transversion at nucleotide 1206 in exon 6 was detected that changes a lysine at amino acid 276 to a glutamate (K276E). In four sporadic cases no mutations were found. In addition, one familial case did not have a mutation in the coding region of the gene

    First genetic evidence of GABAA receptor dysfunction in epilepsy: A mutation in the γ2-subunit gene

    No full text
    Major advances in the identification of genes implicated in idiopathic epilepsy have been made. Generalized epilepsy with febrile seizures plus (GEFS+), benign familial neonatal convulsions and nocturnal frontal lobe epilepsy, three autosomal dominant idiopathic epilepsies, result from mutations affecting voltage-gated sodium and potassium channels, and nicotinic acetylcholine receptors, respectively1-6. Disruption of GABAergic neurotransmission mediated by γ-aminobutyric acid (GABA) has been implicated in epilepsy for many decades7. We now report a K289M mutation in the GABAA receptor γ2-subunit gene (GABRG2) that segregates in a family with a phenotype closely related to GEFS+ (ref. 8), an autosomal dominant disorder associating febrile seizures and generalized epilepsy previously linked to mutations in sodium channel genes1,2. The K289M mutation affects a highly conserved residue located in the extracellular loop between transmembrane segments M2 and M3. Analysis of the mutated and wild-type alleles in Xenopus laevis oocytes confirmed the predicted effect of the mutation, a decrease in the amplitude of GABA-activated currents. We thus provide the first genetic evidence that a GABAA receptor is directly involved in human idiopathic epilepsy.link_to_subscribed_fulltex
    corecore