125 research outputs found

    Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes

    Get PDF
    Exosomes, which are approximately 100 nm vesicles secreted by cells, have been studied with respect to cell-to-cell communication, disease diagnosis, and intracellular delivery. The cellular uptake of exosomes occurs by endocytosis; however, the cytosolic release efficiency of encapsulated molecules inside cells is low. To address this issue, here we demonstrate a simple technique for enhancing the cellular uptake and cytosolic release of exosomes by combining a pH-sensitive fusogenic peptide for the fusion of endosomal and exosomal membranes inside cells. This method stimulates the efficient cytosolic release of the exosomal contents with cationic lipids that act as a "glue" to support cellular uptake. Using this simple combined technique, the effective cellular uptake and cytosolic release of an artificially encapsulated dextran macromolecule (70 kDa) in exosomes are achieved, and a marked improvement in bioactivity is attained with the artificially encapsulated ribosome-inactivating protein saporin. Our method will contribute to many biological research fields, including the assessment of the activities of exosomal contents and the development of candidate tools enabling intracellular visualisation and cellular regulation for future therapeutic applications

    Peptide-assisted intracellular delivery of biomacromolecules

    Get PDF
    Intracellular delivery of biomacromolecules offers opportunities for molecular and materials design, based on an understanding of their chemical properties and their modes of cellular responses. Peptides are advantageous as a delivery tool because of their ease in functional design and synthesis. This review highlights our approaches for the intracellular delivery of biomacromolecules using peptides with distinct modes of action

    Detection of: N 6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease

    Get PDF
    We found that Escherichia coli MazF toxin, an ACA-sequence-specific endoribonuclease, was sensitive to N⁶-methyladenosine (m6A), representing the first m6A-sensitive RNA cleavage enzyme. The methyl-sensitivity of MazF allowed simple analyses of both m6A demethylase and methyltransferase activity. Furthermore, the approach could be used for inhibitor screening

    Mechanisms of Cellular Uptake of Cell-Penetrating Peptides

    Get PDF
    Recently, much attention has been given to the problem of drug delivery through the cell-membrane in order to treat and manage several diseases. The discovery of cell penetrating peptides (CPPs) represents a major breakthrough for the transport of large-cargo molecules that may be useful in clinical applications. CPPs are rich in basic amino acids such as arginine and lysine and are able to translocate over membranes and gain access to the cell interior. They can deliver large-cargo molecules, such as oligonucleotides, into cells. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms, a subject still under debate. Unresolved questions include the detailed molecular uptake mechanism(s), reasons for cell toxicity, and the delivery efficiency of CPPs for different cargoes. Here, we give a review focused on uptake mechanisms used by CPPs for membrane translocation and certain experimental factors that affect the mechanism(s)

    Xanthine derivatives inhibit FTO in an l-ascorbic acid-dependent manner

    Get PDF
    Xanthine derivatives were identified as inhibitors of the N6-methyladenosine (m6A) demethylase activity of fat-mass-and-obesity-associated protein (FTO) by activity-based high-throughput screening using the m6A-sensitive ribonuclease MazF. Pentoxifylline exhibited L-ascorbic acid concentration-dependent inhibitory activity against FTO, an unprecedented mode of inhibition, indicating that L-ascorbic acid is a promising key for designing FTO-specific inhibitors

    Effective RNA Regulation by Combination of Multiple Programmable RNA-Binding Proteins

    Get PDF
    RNAs play important roles in gene expression through translation and RNA splicing. Regulation of specific RNAs is useful to understand and manipulate specific transcripts. Pumilio and fem-3 mRNA-binding factor (PUF) proteins, programmable RNA-binding proteins, are promising tools for regulating specific RNAs by fusing them with various functional domains. The key question is: How can PUF-based molecular tools efficiently regulate RNA functions? Here, we show that the combination of multiple PUF proteins, compared to using a single PUF protein, targeting independent RNA sequences at the 3′ untranslated region (UTR) of a target transcript caused cooperative effects to regulate the function of the target RNA by luciferase reporter assays. It is worth noting that a higher efficacy was achieved with smaller amounts of each PUF expression vector introduced into the cells compared to using a single PUF protein. This strategy not only efficiently regulates target RNA functions but would also be effective in reducing off-target effects due to the low doses of each expression vector

    Stimulating Macropinocytosis for Intracellular Nucleic Acid and Protein Delivery: A Combined Strategy with Membrane-Lytic Peptides to Facilitate Endosomal Escape

    Get PDF
    Delivery of biomacromolecules via endocytic pathways requires the efficient accumulation of cargo molecules into endosomes, followed by their release to the cytosol. We propose a unique intracellular delivery strategy for bioactive molecules using a new potent macropinocytosis-inducing peptide derived from stromal-derived factor 1α (SN21). This peptide allowed extracellular materials to enter cells through the activation of macropinocytosis. To provide the ability to release internalized cargoes from endosomes, we conjugated SN21 with membrane-lytic peptides. The combination of a macropinocytosis-inducing peptide and a membrane-lytic peptide successfully delivered functional siRNA and proteins, which include antibodies, Cre recombinase, and an artificial transcription regulator protein having a transcription activator-like effector (TALE) motif. This study shows the feasibility of combining the physiological stimulation of macropinocytosis with the physicochemical disruption of endosomes as a strategy for intracellular delivery

    Rational design of DNA sequence-specific zinc fingers

    Get PDF
    AbstractWe developed a rational scheme for designing DNA binding proteins. The scheme was applied for a zinc finger protein and the designed sequences were experimentally characterized with high DNA sequence specificity. Starting with the backbone of a known finger structure, we initially calculated amino acid sequences compatible with the expected structure and the secondary structures of the designed fingers were then experimentally confirmed. The DNA-binding function was added to the designed finger by reconsidering a section of the amino acid sequence and computationally selecting amino acids to have the lowest protein–DNA interaction energy for the target DNA sequences. Among the designed proteins, one had a gap between the lowest and second lowest protein–DNA interaction energies that was sufficient to give DNA sequence-specificity

    Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules.

    Get PDF
    Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo
    corecore