216 research outputs found
Current-perpendicular-to-plane giant magnetoresistance of a spin valve using Co2MnSi Heusler alloy electrodes
We report the current-perpendicular-to-plane giant magnetoresistance of a
spin valve with Co2MnSi (CMS) Heusler alloy ferromagnetic electrodes. A
multilayer stack of Cr/Ag/Cr/CMS/Cu/CMS/Fe25Co75/Ir28Mn72/Ru was deposited on a
MgO (001) single crystal substrate. The bottom CMS layer was epitaxially grown
on the Cr/Ag/Cr buffer layers and was ordered to the L21 structure after
annealing at 673 K. The upper CMS layer was found to grow epitaxially on the Cu
spacer layer despite the large lattice mismatch between Cu and CMS. The highest
MR ratios of 8.6% and 30.7% for CPP-GMR were recorded at room temperature and 6
K, respectively. The high spin polarization of the epitaxial CMS layers is the
most likely origin of the high MR ratio.Comment: 14 pages, 3 figures, presented at the 53rd Annual Conference on
Magnetism and Magnetic Materials, to be published in J. Appl. Phy
In-gap state and effect of light illumination in CuIrS probed by photoemission spectroscopy
We have studied disorder-induced in-gap states and effect of light
illumination in the insulating phase of spinel-type CuIrS using
ultra-violet photoemission spectroscopy (UPS). The Ir/Ir
charge-ordered gap appears below the metal-insulator transition temperature.
However, in the insulating phase, in-gap spectral features with are
observed in UPS just below the Fermi level (), corresponding to the
variable range hopping transport observed in resistivity. The spectral weight
at is not increased by light illumination, indicating that the
Ir-Ir dimer is very robust although the long-range octamer order
would be destructed by the photo-excitation. Present results suggest that the
Ir-Ir bipolaronic hopping and disorder effects are responsible
for the conductivity of CuIrS.Comment: 14 pages, 5 figure
Novel electronic states close to Mott transition in low-dimensional and frustrated systems
Recent studies demonstrated that there may appear different novel states in
correlated systems close to localized-itinerant crossover. Especially
favourable conditions for that are met in low-dimensional and in frustrated
systems. In this paper I discuss on concrete examples some of such novel
states. In particular, for some spinels and triangular systems there appears a
"partial Mott transition", in which first some finite clusters (dimers, trimes,
tetramers, heptamers) go over to the itinerant regime, and the real bulk Mott
transition occurs only later. Also some other specific possibilities in this
crossover regime are shortly discussed, such as spin-Peierls-Peierls transition
in TiOCl, spontaneous charge disproportionation in some cases, etc.Comment: To be published in Journal of Physics - Condensed Matter, conference
serie
Phase diagram and upper critical field of homogenously disordered epitaxial 3-dimensional NbN films
We report the evolution of superconducting properties with disorder, in
3-dimensional homogeneously disordered epitaxial NbN thin films. The effective
disorder in NbN is controlled from moderately clean limit down to Anderson
metal-insulator transition by changing the deposition conditions. We propose a
phase diagram for NbN in temperature-disorder plane. With increasing disorder
we observe that as kFl-->1 the superconducting transition temperature (Tc) and
minimum conductivity (sigma_0) go to zero. The phase diagram shows that in
homogeneously disordered 3-D NbN films, the metal-insulator transition and the
superconductor-insulator transition occur at a single quantum critical point at
kFl~1.Comment: To appear in Journal of Superconductivity and Novel Magnetism
(ICSM2010 proceedings
Pressure induced Superconductor-Insulator transition in the spinel compound CuRh2S4
We performed resistivity measurements in CuRhS under
quasi-hydrostatic pressure of up to 8.0 GPa, and found a pressure induced
superconductor-insulator (SI) transition. Initially, with increasing pressure,
the superconducting transition temperature increases from 4.7 K at
ambient pressure to 6.4 K at 4.0 GPa, but decreases at higher pressures. With
further compression, superconductivity in CuRhS disappears abruptly
at a critical pressure between 5.0 and 5.6 GPa, when it becomes an
insulator.Comment: 4 pages, 4 figure
Electronic structure of CuV2S4
The results of ab initio band-structure calculations and measurements of x-ray-emission valence spectra (XES) (Cu Lα, V Kβ5, V Lα, S Kβ1,3, S L2,3) and X-ray-photoelectron valence-band and core-level spectra (XPS) of CuV2S4 thiospinel are presented. It is found that a peak in valence-conduction bands close to the Fermi level is formed by V 3d states, which provide the metallic properties of CuV2S4. The valence band is formed by Cu 3d, V 3d, V 4p, and S 3p states. Examination of the XES and XPS results and the calculated charge-density maps and densities of states indicates that the valences of both Cu and V are similar to those of their elemental solids. Calculations show a strong electron-phonon coupling in CuV2S4 and the prospect of superconducting behavior has not been confirmed
Tuning of Electrical and Optical Properties of Highly Conducting and Transparent Ta-Doped TiO2 Polycrystalline Films
We present a detailed study on polycrystalline transparent conducting Ta-doped TiO2 films, obtained by room temperature pulsed laser deposition followed by an annealing treatment at 550°C in vacuum. The effect of Ta as a dopant element and of different synthesis conditions are explored in order to assess the relationship between material structure and functional properties, i.e. electrical conductivity and optical transparency. We show that for the doped samples it is possible to achieve low resistivity (of the order of 5×10-4 Ωcm) coupled with transmittance values exceeding 80% in the visible range, showing the potential of polycrystalline Ta:TiO2 for application as a transparent electrode in novel photovoltaic devices. The presence of trends in the structural (crystalline domain size, anatase cell parameters), electrical (resistivity, charge carrier density and mobility) and optical (transmittance, optical band gap, effective mass) properties as a function of the oxygen background pressures and laser fluence used during the deposition process and of the annealing atmosphere is discussed, and points towards a complex defect chemistry ruling the material behavior. The large mobility values obtained in this work for Ta:TiO2 polycrystalline films (up to 13 cm2V-1s-1) could represent a definitive advantage with respect to the more studied Nb-doped TiO2
- …