61 research outputs found

    Clostridium septicum sepsis and colorectal cancer - a reminder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous clostridium septicum infections are rare and are associated with a high mortality. Association of clostridium infection with colorectal malignancies have been previously reported and most cases are described in tumours of the ascending colon. We report our experience of clostridium septicum infection in the presence of tumour perforation in a series of two patients as a reminder of its association with sepsis in the presence of colorectal malignancy.</p> <p>Case Presentation</p> <p>We isolated clostridium septicum infection in a series of two patients admitted as emergencies. One patient was found to have a perforated caecal tumour intraoperatively whilst the other had a perforated rectal tumour. The clinical outcome and management of each case are reported and underlying reasons for variations in outcome are discussed.</p> <p>Conclusion</p> <p>Although uncomman, the possibility of clostridium septicum sepsis should be borne in mind in patients who present with underlying malignancy and have sepsis. The cumulative effect of sepsis and malignant perforation is associated with a high morbidity and mortality. Awareness and early diagnosis of clostridium septicum may improve the prognosis of what is usually regarded as a fatal infection.</p

    Tight Regulation of the intS Gene of the KplE1 Prophage: A New Paradigm for Integrase Gene Regulation

    Get PDF
    Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excisive recombination are discussed
    corecore