68 research outputs found

    General formulae for dipole Wilson line correlators with the Color Glass Condensate

    Full text link
    We present general formulae to compute Wilson line correlators with the Color Glass Condensate described by the McLerran-Venugopalan model. We explicitly construct a complete and non-orthogonal set of color-singlet bases and write matrix elements down, so that the exponential of the matrix leads to the Wilson line correlators. We further develop a systematic perturbative expansion of dipole Wilson line correlators in terms of 1/Nc1/N_c where NcN_c is the color number. As a phenomenological application we calculate the flow harmonics vn{m}v_n\{m\} in the dipole model and discuss the NcN_c scaling.Comment: 19 pages, 4 figure

    Initial energy density and gluon distribution from the Glasma in heavy-ion collisions

    Full text link
    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of the heavy-ion collisions. We first decompose the energy density into the momentum components exactly in the McLerran-Venugopalan model, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement with inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.Comment: 14 pages, 8 figures, 3 table

    Two-color quark matter: U(1)_A restoration, superfluidity, and quarkyonic phase

    Full text link
    We discuss the phase structure of quantum chromodynamics (QCD) with two colors and two flavors of light quarks. This is motivated by the increasing interest in the QCD phase diagram as follows: (1) The QCD critical point search has been under intensive dispute and its location and existence suffer from uncertainty of effective U(1)_A symmetry restoration. (2) A new phase called quarkyonic matter is drawing theoretical and experimental attention but it is not clear whether it can coexist with diquark condensation. We point out that two-color QCD is nontrivial enough to contain essential ingredients for (1) and (2) both, and most importantly, is a system without the sign problem in numerical simulations on the lattice. We adopt the two-flavor Nambu-Jona-Lasinio model extended with the two-color Polyakov loop and make quantitative predictions which can be tested by lattice simulations.Comment: 14 pages, REVTeX4, 12 eps figures; v2: version published in Phys. Rev. D; v3: an error in the Appendix fixed, Fig. 9 modified accordingl
    • …
    corecore