17 research outputs found

    Effects of Overexpression of Neurosecretory Protein GL-Precursor Gene on Glucose Homeostasis and Insulin Sensitivity in Mice

    No full text
    A high-fat diet (HFD) quickly induces obesity with insulin resistance and hyperglycemia. We previously reported that a novel hypothalamic small protein, named neurosecretory protein GL (NPGL), stimulates feeding and fat accumulation in mice. However, the effects of NPGL on insulin sensitivity and glucose homeostasis remain unknown. Hence, we subjected NPGL-precursor gene (Npgl)-overexpressing mice to the oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (IPITT) under normal chow (NC) and HFD conditions. Npgl overexpression promoted body mass gain and tended to increase food intake of NC-fed mice, whereas it had little effect on HFD-fed mice. The OGTT showed elevated blood glucose and insulin levels in Npgl-overexpressing NC-fed mice 15 min after glucose administration. Both the OGTT and IPITT demonstrated that Npgl overexpression decreased blood glucose levels in HFD-fed mice 60 min after glucose and insulin treatments. Notably, Npgl overexpression increased adipose tissue masses only in NC-fed mice, and it decreased blood glucose and insulin levels in HFD-fed mice at the experimental end point. It also increased the mRNA expression of galanin, one of the feeding and metabolic regulatory neuropeptides, in the hypothalamus of HFD-fed mice. Therefore, NPGL may alleviate HFD-induced hyperglycemia and insulin resistance in mice

    Behavioral tracing demonstrates dietary nutrient discrimination in two-spotted crickets <i>Gryllus bimaculatus</i>

    No full text
    <p>Animals select appropriate diets to meet their nutritional requirements. Here, we demonstrate the availability for analysis of feeding preference using an orthopteran, the two-spotted cricket <i>Gryllus bimaculatus.</i> A time-course study of these insects, involving continuous recording and tracing behavior for 9 h, allowed us to monitor discrimination of diet that contained various nutrients.</p

    Overexpression of the Gene Encoding Neurosecretory Protein GL Precursor Prevents Excessive Fat Accumulation in the Adipose Tissue of Mice Fed a Long-Term High-Fat Diet

    No full text
    We previously identified a novel small hypothalamic protein, neurosecretory protein GL (NPGL), which induces feeding behavior and fat accumulation in rodents depending on their diet. In the present study, we explored the effects of NPGL on feeding behavior and energy metabolism in mice placed on a long-term high-fat diet with 60% calories from fat (HFD 60). Overexpression of the NPGL precursor gene (Npgl) over 18 weeks increased food intake and weight. The weekly weight gain of Npgl-overexpressing mice was higher than that of controls until 7 weeks from induction of overexpression, after which it ceased to be so. Oral glucose tolerance tests showed that Npgl overexpression maintained glucose tolerance and increased blood insulin levels, and intraperitoneal insulin tolerance tests showed that it maintained insulin sensitivity. At the experimental endpoint, Npgl overexpression was associated with increased mass of the perirenal white adipose tissue (WAT) and decreased mass of the epididymal WAT (eWAT), resulting in little effect on the total WAT mass. These results suggest that under long-term HFD 60 feeding, Npgl overexpression may play a role in avoiding metabolic disturbance both by accelerating energy storage and by suppressing excess fat accumulation in certain tissues, such as the eWAT

    Effects of Irregular Feeding on the Daily Fluctuations in mRNA Expression of the Neurosecretory Protein GL and Neurosecretory Protein GM Genes in the Mouse Hypothalamus

    No full text
    Circadian desynchrony induced by a long period of irregular feeding leads to metabolic diseases, such as obesity and diabetes mellitus. The recently identified neurosecretory protein GL (NPGL) and neurosecretory protein GM (NPGM) are hypothalamic small proteins that stimulate food intake and fat accumulation in several animals. To clarify the mechanisms that evoke feeding behavior and induce energy metabolism at the appropriate times in accordance with a circadian rhythm, diurnal fluctuations in Npgl and Npgm mRNA expression were investigated in mice. Quantitative RT-PCR analysis revealed that the mRNAs of these two genes were highly expressed in the mediobasal hypothalamus during the active dark phase under ad libitum feeding. In mice restricted to 3 h of feeding during the inactive light phase, the Npgl mRNA level was augmented in the moment prior to the feeding period and the midnight peak of Npgm mRNA was attenuated. Moreover, the mRNA expression levels of clock genes, feeding regulatory neuropeptides, and lipid metabolic enzymes in the central and peripheral tissues were comparable to those of central Npgl and Npgm. These data suggest that Npgl and Npgm transcription fluctuates daily and likely mediates feeding behavior and/or energy metabolism at an appropriate time according to the meal timing

    Best Practices for Comprehensive Annotation of Neuropeptides of <i>Gryllus bimaculatus</i>

    No full text
    Genome annotation is critically important data that can support research. Draft genome annotations cover representative genes; however, they often do not include genes that are expressed only in limited tissues and stages, or genes with low expression levels. Neuropeptides are responsible for regulation of various physiological and biological processes. A recent study disclosed the genome draft of the two-spotted cricket Gryllus bimaculatus, which was utilized to understand the intriguing physiology and biology of crickets. Thus far, only two of the nine reported neuropeptides in G. bimaculatus were annotated in the draft genome. Even though de novo assembly using transcriptomic analyses can comprehensively identify neuropeptides, this method does not follow those annotations on the genome locus. In this study, we performed the annotations based on the reference mapping, de novo transcriptome assembly, and manual curation. Consequently, we identified 41 neuropeptides out of 43 neuropeptides, which were reported in the insects. Further, 32 of the identified neuropeptides on the genomic loci in G. bimaculatus were annotated. The present annotation methods can be applicable for the neuropeptide annotation of other insects. Furthermore, the methods will help to generate useful infrastructures for studies relevant to neuropeptides
    corecore