11,993 research outputs found

    Universal conductance in quantum wires in the presence of Umklapp scattering

    Full text link
    The effects of Umklapp scattering on the zero-temperature conductance in one-dimensional quantum wires are reexamined by taking into account both the screening of external potential and the non-uniform chemical potential shift due to electron-electron interaction. It is shown that in the case away from half-filling the conductance is given by the universal value, 2e2/h2e^2/h, even in the presence of Umklapp scattering, owing to these renormalization effects of external potential. The conclusion is in accordance with the recent claim obtained for the system with non-interacting leads being attached to a quantum wire.Comment: 5 pages, to be published in Euro. Phys. J.

    String tension and glueball masses of SU(2) QCD from perfect action for monopoles and strings

    Get PDF
    We study the perfect monopole action as an infrared effective theory of SU(2) QCD. It is transformed exactly into a lattice string model. Since the monopole interactions are weak in the infrared SU(2) QCD, the string interactions become strong. The strong coupling expansion of string model shows the quantum fluctuation is small. The classical string tension is estimated analytically, and we see it is very close to the quantum one in the SU(2) QCD. We also discuss how to calculate the glueball mass in our model.Comment: LATTICE99(Confinement), 3 pages and 1 EPS figure

    Chain breaks and the susceptibility of Sr_2Cu_{1-x}Pd_xO_{3+\delta} and other doped quasi one-dimensional antiferromagnets

    Full text link
    We study the magnetic susceptibility of one-dimensional S=1/2 antiferromagnets containing non-magnetic impurities which cut the chain into finite segments. For the susceptibility of long anisotropic Heisenberg chain-segments with open boundaries we derive a parameter-free result at low temperatures using field theory methods and the Bethe Ansatz. The analytical result is verified by comparing with Quantum-Monte-Carlo calculations. We then show that the partitioning of the chain into finite segments can explain the Curie-like contribution observed in recent experiments on Sr_2Cu_{1-x}Pd_xO_{3+\delta}. Possible additional paramagnetic impurities seem to play only a minor role.Comment: 4 pages, 3 figures, final versio

    The infrared-dark dust content of high redshift galaxies

    Full text link
    We present a theoretical model aimed at explaining the IRX-ÎČ\beta relation for high redshift (z >5) galaxies. Recent observations (Capak+2015; Bouwens+2016) have shown that early Lyman Break Galaxies, although characterized by a large UV attenuation (e.g. flat UV beta slopes), show a striking FIR deficit, i.e. they are "infrared-dark". This marked deviation from the local IRX-beta relation can be explained by the larger molecular gas content of these systems. While dust in the diffuse ISM attains relatively high temperatures (Td = 45 K for typical size a=0.1 um; smaller grains can reach Td = 60 K), a sizable fraction of the dust mass is embedded in dense gas, and therefore remains cold. If confirmed, the FIR deficit might represent a novel, powerful indicator of the molecular content of high-z galaxies which can be used to pre-select candidates for follow-up deep CO observations. Thus, high-z CO line searches with ALMA might be much more promising than currently thought.Comment: 8 pages, 4 Figures, MNRAS Submitte

    Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole

    Full text link
    We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along the inner boundary near the black hole through the Alfv{\'e}n wave, and eventually drive the jet. The quasi-steady disk is not an advection-dominated disk but a neutrino cooling-dominated one. Mass accretion rates in the disks are greater than 0.01 Msun/sec with large fluctuations. The disk is transparent for neutrinos. The dense part of the disk, which locates near the hole, emits neutrino efficiently at a constant rate of < 8 \times 10^{51} erg/s. The neutrino luminosity is much smaller than those from supernovae after the neutrino burst.Comment: 42 pages, accepted for publication in the Astrophysical Journal. A paper with higher-resolution figures available at http://www.ec.knct.ac.jp/~fujimoto/collapsar/mhd-color.pd

    Quantum Disordered Ground States in Frustrated Antiferromagnets with Multiple Ring Exchange Interactions

    Get PDF
    We present a certain class of two-dimensional frustrated quantum Heisenberg spin systems with multiple ring exchange interactions which are rigorously demonstrated to have quantum disordered ground states without magnetic long-range order. The systems considered in this paper are s=1/2 antiferromagnets on a honeycomb and square lattices, and an s=1 antiferromagnet on a triangular lattice. We find that for a particular set of parameter values, the ground state is a short-range resonating valence bond state or a valence bond crystal state. It is shown that these systems are closely related to the quantum dimer model introduced by Rokhsar and Kivelson as an effective low-energy theory for valence bond states.Comment: 6 pages, 4 figure
    • 

    corecore