8,849 research outputs found

    Green's Function Method for Line Defects and Gapless Modes in Topological Insulators : Beyond Semiclassical Approach

    Full text link
    Defects which appear in heterostructure junctions involving topological insulators are sources of gapless modes governing the low energy properties of the systems, as recently elucidated by Teo and Kane [Physical Review B82, 115120 (2010)]. A standard approach for the calculation of topological invariants associated with defects is to deal with the spatial inhomogeneity raised by defects within a semiclassical approximation. In this paper, we propose a full quantum formulation for the topological invariants characterizing line defects in three-dimensional insulators with no symmetry by using the Green's function method. On the basis of the full quantum treatment, we demonstrate the existence of a nontrivial topological invariant in the topological insulator-ferromagnet tri-junction systems, for which a semiclassical approximation fails to describe the topological phase. Also, our approach enables us to study effects of electron-electron interactions and impurity scattering on topological insulators with spatial inhomogeneity which gives rise to the Axion electrodynamics responses.Comment: 15 pages, 3 figure

    What Controls the Structure and Dynamics of Earth's Magnetosphere?

    Get PDF

    Geometrical, electronic and magnetic properties of Na0.5_{0.5}CoO2_2 from first principles

    Full text link
    We report a first-principles projector augmented wave (PAW) study on Na0.5_{0.5}CoO2_2. With the sodium ion ordered insulating phase being identified in experiments, pure density functional calculations fail to predict an insulating ground state, which indicates that Na ordering alone can not produce accompanying Co charge ordering, if additional correlation is not properly considered. At this level of theory, the most stable phase presents ferromagnetic ordering within the CoO2_2 layer and antiferromagnetic coupling between these layers. When the on-site Coulomb interaction for Co 3d orbitals is included by an additional Hubbard parameter UU, charge ordered insulating ground state can be obtained. The effect of on-site interaction magnitude on electronic structure is studied. At a moderate value of UU (4.0 eV for example), the ground state is antiferromagnetic, with a Co4+^{4+} magnetic moment about 1.0 μB\mu_B and a magnetic energy of 0.12 eV/Co. The rehybridization process is also studied in the DFT+U point of view.Comment: 21 pages, 7 figure

    GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks

    Full text link
    We describe the main building blocks of a generic automated package for the calculation of Feynman diagrams. These blocks include the generation and creation of a model file, the graph generation, the symbolic calculation at an intermediate level of the Dirac and tensor algebra, implementation of the loop integrals, the generation of the matrix elements or helicity amplitudes, methods for the phase space integrations and eventually the event generation. The report focuses on the fully automated systems for the calculation of physical processes based on the experience in developing GRACE-loop. As such, a detailed description of the renormalisation procedure in the Standard Model is given emphasizing the central role played by the non-linear gauge fixing conditions for the construction of such automated codes. The need for such gauges is better appreciated when it comes to devising efficient and powerful algorithms for the reduction of the tensorial structures of the loop integrals. A new technique for these reduction algorithms is described. Explicit formulae for all two-point functions in a generalised non-linear gauge are given, together with the complete set of counterterms. We also show how infrared divergences are dealt with in the system. We give a comprehensive presentation of some systematic test-runs which have been performed at the one-loop level for a wide variety of two-to-two processes to show the validity of the gauge check. These cover fermion-fermion scattering, gauge boson scattering into fermions, gauge bosons and Higgs bosons scattering processes. Comparisons with existing results on some one-loop computation in the Standard Model show excellent agreement. We also briefly recount some recent development concerning the calculation of mutli-leg one-loop corrections.Comment: 131 pages. Manuscript expanded quite substantially with the inclusion of an overview of automatic systems for the calculation of Feynman diagrams both at tree-level and one-loop. Other additions include issues of regularisation, width effects and renormalisation with unstable particles and reduction of 5- and 6-point functions. This is a preprint version, final version to appear as a Phys. Re

    Thermodynamic signature of the SU(4)\mathrm{SU}(4) spin-orbital liquid and symmetry fractionalization from the Lieb-Schultz-Mattis theorem

    Full text link
    The SU(4)\mathrm{SU}(4) Heisenberg model on the honeycomb lattice is expected to host a quantum spin-orbital liquid at low temperature with an astonishing candidate material, α\alpha-ZrCl3_3. We employed the canonical thermal pure quantum state method to investigate the finite-temperature phase of this model. Exploiting the full symmetry of SU(4)\mathrm{SU}(4), the calculation up to a 24-site cluster, which is equivalent to 48 sites in the spin-1/2 language, is possible. This state-of-the-art computation with large-scale parallelization enables us to capture the thermodynamic properties of the SU(4)\mathrm{SU}(4) Heisenberg model on the honeycomb lattice. In particular, the specific heat shows a characteristic peak-and-shoulder structure, which should be related to the nature of the low-temperature quantum spin-orbital liquid phase. We also discuss what can be concluded from the assumption that the ground state is gapped and symmetric in view of the generalized Lieb-Schultz-Mattis theorem.Comment: 6 pages, 3 figure

    Ultrahigh resolution optical coherence tomography using a superluminescent light source

    Get PDF
    A superluminescent Ti:Al2O3 crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 μW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al2O3 crystal. Ultrahigh resolution OCT imaging is demonstrated with 2.2 μm axial resolution in air, or 1.7 μm in tissue, with >86 dB sensitivity. This light source provides a simple and robust alternative to femtosecond lasers for ultrahigh resolution OCT imaging

    Quasiperpendicular high Mach number Shocks

    Full text link
    Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\tau}c, where {\tau}c is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.Comment: Accepted and Published in Physical Review Letters (2015

    XMM-Newton observation of the ULIRG NGC 6240: The physical nature of the complex Fe K line emission

    Full text link
    We report on an XMM-Newton observation of the ultraluminous infrared galaxy NGC 6240. The 0.3-10 keV spectrum can be successfully modelled with: (i) three collisionally ionized plasma components with temperatures of about 0.7, 1.4, and 5.5 keV; (ii) a highly absorbed direct power-law component; and (iii) a neutral Fe K_alpha and K_beta line. We detect a significant neutral column density gradient which is correlated with the temperature of the three plasma components. Combining the XMM-Newton spectral model with the high spatial resolution Chandra image we find that the temperatures and the column densities increase towards the center. With high significance, the Fe K line complex is resolved into three distinct narrow lines: (i) the neutral Fe K_alpha line at 6.4 keV; (ii) an ionized line at about 6.7 keV; and (iii) a higher ionized line at 7.0 keV (a blend of the Fe XXVI and the Fe K_beta line). While the neutral Fe K line is most probably due to reflection from optically thick material, the Fe XXV and Fe XXVI emission arises from the highest temperature ionized plasma component. We have compared the plasma parameters of the ultraluminous infrared galaxy NGC 6240 with those found in the local starburst galaxy NGC 253. We find a striking similarity in the plasma temperatures and column density gradients, suggesting a similar underlying physical process at work in both galaxies.Comment: 8 pages including 9 figures. Accepted for publication in A&
    • …
    corecore