1,915 research outputs found

    Inverse spectral problem for the Schr\"odinger operator on the square lattice

    Full text link
    We consider an inverse spectral problem on a quantum graph associated with the square lattice. Assuming that the potentials on the edges are compactly supported and symmetric, we show that the Dirichlet-to-Neumann map for a boundary value problem on a finite part of the graph uniquely determines the potentials. We obtain a reconstruction procedure, which is based on the reduction of the differential Schr\"odinger operator to a discrete one. As a corollary of the main results, it is proved that the S-matrix for all energies in any given open set in the continuous spectrum uniquely specifies the potentials on the square lattice

    A conceptual framework for developing dashboards for big mobility data

    Full text link
    Dashboards are an increasingly popular form of data visualization. Large, complex, and dynamic mobility data present a number of challenges in dashboard design. The overall aim for dashboard design is to improve information communication and decision making, though big mobility data in particular require considering privacy alongside size and complexity. Taking these issues into account, a gap remains between wrangling mobility data and developing meaningful dashboard output. Therefore, there is a need for a framework that bridges this gap to support the mobility dashboard development and design process. In this paper we outline a conceptual framework for mobility data dashboards that provides guidance for the development process while considering mobility data structure, volume, complexity, varied application contexts, and privacy constraints. We illustrate the proposed framework’s components and process using example mobility dashboards with varied inputs, end-users and objectives. Overall, the framework offers a basis for developers to understand how informational displays of big mobility data are determined by end-user needs as well as the types of data selection, transformation, and display available to particular mobility datasets

    Carbon Speciation and Solubility in Silicate Melts

    Get PDF
    To improve our understanding of the Earth's global carbon cycle, it is critical to characterize the distribution and storage mechanisms of carbon in silicate melts. Presently, the carbon budget of the deep Earth is not well constrained and is highly model-dependent. In silicate melts of the uppermost mantle, carbon exists predominantly as molecular carbon dioxide and carbonate, whereas at greater depths, carbon forms complex polymerized species. The concentration and speciation of carbon in silicate melts is intimately linked to the melt's composition and affects its physical and dynamic properties. Here we review the results of experiments and calculations on the solubility and speciation of carbon in silicate melts as a function of pressure, temperature, composition, polymerization, water concentration, and oxygen fugacity

    Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion

    Get PDF
    Group 3 innate lymphoid cells (ILC3s) have demonstrated roles in promoting antibacterial immunity, maintaining epithelial barrier function, and supporting tissue repair. ILC3 alterations are associated with chronic inflammation and inflammatory disease; however, the characteristics and relevant regulatory mechanisms of this cell population in HIV-1 infection are poorly understood due in part to a lack of a robust model. Here, we determined that functional human ILC3s develop in lymphoid organs of humanized mice and that persistent HIV-1 infection in this model depletes ILC3s, as observed in chronic HIV-1-infected patients. In HIV-1-infected mice, effective antiretroviral therapy reversed the loss of ILC3s. HIV-1-dependent reduction of ILC3s required plasmacytoid dendritic cells (pDCs), IFN-I, and the CD95/FasL pathway, as targeted depletion or blockade of these prevented HIV-1-induced ILC3 depletion in vivo and in vitro, respectively. Finally, we determined that HIV-1 infection induces CD95 expression on ILC3s via a pDC-and IFN-I-dependent mechanism that sensitizes ILC3s to undergo CD95/FasL-mediated apoptosis. We conclude that chronic HIV-1 infection depletes ILC3s through pDC activation, induction of IFN-I, and CD95-mediated apoptosis

    Deletion of Mcpip1 in Mcpip1fl/flAlbCreMcpip1^{fl/fl}Alb^{Cre} mice recapitulates the phenotype of human primary biliary cholangitis

    Get PDF
    Primary biliary cholangitis (PBC) is an autoimmune disease characterized by progressive destruction of the intrahepatic bile ducts. The immunopathology of PBC involves excessive inflammation; therefore, negative regulators of inflammatory response, such as Monocyte Chemoattractant Protein-1-Induced Protein-1 (MCPIP1) may play important roles in the development of PBC. The aim of this work was to verify whether Mcpip1 expression protects against development of PBC. Genetic deletion of Zc3h12a was used to characterize the role of Mcpip1 in the pathogenesis of PBC in 6–52-week-old mice. We found that Mcpip1 deficiency in the liver (Mcpip1fl/flAlbCre) recapitulates most of the features of human PBC, in contrast to mice with Mcpip1 deficiency in myeloid cells (Mcpip1fl/flLysMCre mice), which present with robust myeloid cell-driven systemic inflammation. In Mcpip1fl/flAlbCre livers, intrahepatic bile ducts displayed proliferative changes with inflammatory infiltration, bile duct destruction, and fibrosis leading to cholestasis. In plasma, increased concentrations of IgG, IgM, and AMA autoantibodies (anti-PDC-E2) were detected. Interestingly, the phenotype of Mcpip1fl/flAlbCre mice was robust in 6-week-old, but milder in 12–24-week-old mice. Hepatic transcriptome analysis of 6-week-old and 24-week-old Mcpip1fl/flAlbCre mice showed 812 and 8 differentially expressed genes, respectively, compared with age-matched control mice, and revealed a distinct set of genes compared to those previously associated with development of PBC. In conclusion, Mcpip1fl/flAlbCre mice display early postnatal phenotype that recapitulates most of the features of human PBC

    Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain

    Get PDF
    Breeding to increase β-carotene levels in cereal grains, termed provitamin A biofortification, is an economical approach to address dietary vitamin A deficiency in the developing world. Experimental evidence from association and linkage populations in maize (Zea maysL.) demonstrate that the gene encoding β-carotene hydroxylase 1 (crtRB1) underlies a principal quantitative trait locus associated with β-carotene concentration and conversion in maize kernels. crtRB1 alleles associated with reduced transcript expression correlate with higher β-carotene concentrations. Genetic variation at crtRB1 also affects hydroxylation efficiency among encoded allozymes, as observed by resultant carotenoid profiles in recombinant expression assays. The most favorable crtRB1 alleles, rare in frequency and unique to temperate germplasm, are being introgressed via inexpensive PCR marker-assisted selection into tropical maize germplasm adapted to developing countries, where it is most needed for human health
    corecore