17 research outputs found

    Complex X chromosome rearrangement associated with multiorgan autoimmunity

    Get PDF
    BACKGROUND: Turner syndrome, a congenital condition that affects 1/2,500 births, results from absence or structural alteration of the second sex chromosome. Turner syndrome is usually associated with short stature, gonadal dysgenesis and variable dysmorphic features. The classical 45,X karyotype accounts approximately for half of all patients, the remainder exhibit mosaicism or structural abnormalities of the X chromosome. However, complex intra-X chromosomal rearrangements involving more than three breakpoints are extremely rare. RESULTS: We present a unique case of a novel complex X chromosome rearrangement in a young female patient presenting successively a wide range of autoimmune diseases including insulin dependent diabetes mellitus, Hashimoto's thyroiditis, celiac disease, anaemia perniciosa, possible inner ear disease and severe hair loss. For the genetic evaluation, conventional cytogenetic analysis and FISH with different X specific probes were initially performed. The complexity of these results and the variety of autoimmune problems of the patient prompted us to identify the exact composition and breakpoints of the rearranged X as well as methylation status of the X chromosomes. The high resolution array-CGH (assembly GRCh37/hg19) detected single copy for the whole chromosome X short arm. Two different sized segments of Xq arm were present in three copies: one large size of 80,3 Mb from Xq11.1 to Xq27.3 region and another smaller (11,1 Mb) from Xq27.3 to Xq28 region. An 1,6 Mb Xq27.3 region of the long arm was present in two copies. Southern blot analysis identified a skewed X inactivation with approximately 70:30 % ratios of methylated/unmethylated fragments. The G-band and FISH patterns of the rearranged X suggested the aspect of a restructured i(Xq) chromosome which was shattered and fortuitously repaired. The X-STR genotype analysis of the family detected that the patient inherited intact maternal X chromosome and a rearranged paternal X chromosome. The multiple Xq breakages and fusions as well as inverted duplication would have been expected to cause a severe Turner phenotype. However, the patient lacks many of the classic somatic features of Turner syndrome, instead she presented multiorgan autoimmune diseases. CONCLUSIONS: The clinical data of the presented patient suggest that fragmentation of the i(Xq) chromosome elevates the risk of autoimmune diseases

    Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    Full text link
    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Ophthalmic drug design based on the metabolic activity of the eye: Soft drugs and chemical delivery systems

    No full text
    Despite its apparent easy accessibility, the eye is, in fact, well protected against the absorption of foreign materials, including therapeutic agents, by the eyelids, by the tearflow, and by the permeability barriers imposed by the cornea on one side and the blood-retinal barrier on the other. Most existing ophthalmic drugs were adapted from other therapeutic applications and were not specifically developed for the treatment of eye diseases; hence, they are not well suited to provide eye-specific effects without causing systemic side effects. A real breakthrough in the area of ophthalmic therapeutics can be achieved only by specifically designing new drugs for ophthalmic applications to incorporate the possibility of eye targeting into their chemical structure. Possibilities provided along these lines by designing chemical delivery systems (CDSs) and soft drugs within the framework of retrometabolic drug design are reviewed here. Both are general concept applicable in almost any therapeutic area. This review will concentrate on \-adrenergic agonists and anti-inflammatory corticosteroids, where clinical results obtained with new chemical entities, such as betaxoxime, adaprolol, loteprednol etabonate, and etiprednol dicloacetate, exist to support the advantages of such metabolism-focused, ophthalmic-specific drug design approaches
    corecore