12 research outputs found

    Methane (CH4)-bearing fluid inclusions in the Myanmar jadeitite

    Full text link

    Use of mental health services among disaster survivors: predisposing factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the high prevalence of mental health problems after disasters it is important to study health services utilization. This study examines predictors for mental health services (MHS) utilization among survivors of a man-made disaster in the Netherlands (May 2000).</p> <p>Methods</p> <p>Electronic records of survivors (n = 339; over 18 years and older) registered in a mental health service (MHS) were linked with general practice based electronic medical records (EMRs) of survivors and data obtained in surveys. EMR data were available from 16 months pre-disaster until 3 years post-disaster. Symptoms and diagnoses in the EMRs were coded according to the International Classification of Primary Care (ICPC). Surveys were carried out 2–3 weeks and 18 months post-disaster, and included validated questionnaires on psychological distress, post-traumatic stress reactions and social functioning. Demographic and disaster-related variables were available. Predisposing factors for MHS utilization 0–18 months and 18–36 months post-disaster were examined using multiple logistic regression models.</p> <p>Results</p> <p>In multiple logistic models, adjusting for demographic and disaster related variables, MHS utilization was predicted by demographic variables (young age, immigrant, public health insurance, unemployment), disaster-related exposure (relocation and injuries), self-reported psychological problems and pre- and post-disaster physician diagnosed health problems (chronic diseases, musculoskeletal problems). After controlling for all health variables, disaster intrusions and avoidance reactions (OR:2.86; CI:1.48–5.53), hostility (OR:2.04; CI:1.28–3.25), pre-disaster chronic diseases (OR:1.82; CI:1.25–2.65), injuries as a result of the disaster (OR:1.80;CI:1.13–2.86), social functioning problems (OR:1.61;CI:1.05–2.44) and younger age (OR:0.98;CI:0.96–0.99) predicted MHS utilization within 18 months post-disaster. Furthermore, disaster intrusions and avoidance reactions (OR:2.29;CI:1.04–5.07) and hostility (OR:3.77;CI:1.51–9.40) predicted MHS utilization following 18 months post-disaster.</p> <p>Conclusion</p> <p>This study showed that several demographic and disaster-related variables and self-reported and physician diagnosed health problems predicted post-disaster MHS-use. The most important factors to predict post-disaster MHS utilization were disaster intrusions and avoidance reactions and symptoms of hostility (which can be identified as symptoms of PTSD) and pre-disaster chronic diseases.</p

    O-H isotope ratios of high-pressure ultramafic rocks: Implications for fluid sources and mobility in the subducted hydrous mantle.

    No full text
    We examine the O-H isotope signatures of Alpine ultramafic rocks and eclogitic metagabbros of the Erro-Tobbio peridotite Unit (western Italian Alps), which record a subduction and exhumation cycle. Localization of subduction-related deformation along serpentinite mylonite shear zones favoured preservation of pre-subduction mantle and low temperature (oceanic) alteration assemblages within undeformed (meta) peridotite that underwent partial static recrystallization to high-pressure metamorphic parageneses. Bulk rock and mineral separate (clinopyroxene and serpentine) oxygen isotope ratios of the serpentinized mantle peridotites (5-8\u2030) are slightly enriched in18O compared with those of the high-pressure metaperidotites and the serpentinite mylonites (4.4-7.6\u2030). The lowest values occur in high-pressure veins (3.5-5.7\u2030) and eclogitic metagabbros (3.1-5.3\u2030). These variations are comparable to variations observed in modern oceanic rocks and in non-subducted ophiolites. Preservation of pre-eclogitic \u3b418O signatures of the Erro-Tobbio rocks and a lack of oxygen isotope re-equilibration between different shear zones imply local-scale fluid flow at low water/rock ratios and closed system behaviour during high-pressure metamorphism. Different serpentine generations show a bimodal distribution in \u3b4D values: pre-eclogitic lizardite and chrysotile range from -102 to -77\u2030; high-pressure antigorite in the mylonites and in low strain metaperidotites range from -71 to -57\u2030 and -83 to -60\u2030, respectively. Comparable ranges occur in antigorite in the associated high-pressure veins, suggesting that the hydrogen signatures were acquired prior to veining. We propose that the isotopic variations reflect multiple events of fluid uptake in different geodynamic environments. The H- and O-isotope ratios in the eclogitic mylonites suggest that initial hydration occurred over a range of temperatures during local interaction with altered seawater along oceanic shear zones. The18O-enriched and H-depleted compositions of chrysotile and lizardite in the mantle peridotites suggest that a second hydration event may have occurred as a result of interaction with metamorphic fluids at the early stages of burial in a forearc setting, where slabs undergo large-scale, low-temperature fluid fluxing. The oceanic mantle is thus a candidate for continuous hydration during its oceanic and early subduction history. The Erro-Tobbio unit thus represents an example of cycling of internally-derived fluids, whereby the different structural and textural domains behaved as relatively closed systems to fluid circulation during high-pressure metamorphism

    Posttraumatic Stress Disorder: Current Concepts and Controversies

    No full text
    corecore