3,668 research outputs found

    Changing EDSS progression in placebo cohorts in relapsing MS: A systematic review and meta-regression

    Full text link
    Background: Recent systematic reviews of randomised controlled trials (RCTs) in relapsing multiple sclerosis (RMS) revealed a decrease in placebo annualized relapse rates (ARR) over the past two decades. Furthermore, regression to the mean effects were observed in ARR and MRI lesion counts. It is unclear whether disease progression measured by the expanded disability status scale (EDSS) exhibits similar features. Methods: A systematic review of RCTs in RMS was conducted extracting data on EDSS and baseline characteristics. The logarithmic odds of disease progression were modelled to investigate time trends. Random-effects models were used to account for between-study variability; all investigated models included trial duration as a predictor to correct for unequal study durations. Meta-regressions were conducted to assess the prognostic value of a number of baseline variables. Results: The systematic literature search identified 39 studies, including a total of 19,714 patients. The proportion of patients in placebo controls experiencing a disease progression decreased over the years (p<0.001). Meta regression identified associated covariates including the size of the study and its duration that in part explained the time trend. Progression probabilities tended to be lower in the second year compared to the first year with a reduction of 24% in progression probability from year 1 to year 2 (p=0.014). Conclusion: EDSS disease progression exhibits similar behaviour over time as the ARR and point to changes in trial characteristics over the years, questioning comparisons between historical and recent trials.Comment: 17 pages, 2 figure

    Blinded assessment of treatment effects utilizing information about the randomization block length

    Get PDF
    It is essential for the integrity of double-blind clinical trials that during the study course the individual treatment allocations of the patients as well as the treatment effect remain unknown to any involved person. Recently, methods have been proposed for which it was claimed that they would allow reliable estimation of the treatment effect based on blinded data by using information about the block length of the randomization procedure. If this would hold true, it would be difficult to preserve blindness without taking further measures. The suggested procedures apply to continuous data. We investigate the properties of these methods thoroughly by repeated simulations per scenario. Furthermore, a method for blinded treatment effect estimation in case of binary data is proposed, and blinded tests for treatment group differences are developed both for continuous and binary data. We report results of comprehensive simulation studies that investigate the features of these procedures. It is shown that for sample sizes and treatment effects which are typical in clinical trials, no reliable inference can be made on the treatment group difference which is due to the bias and imprecision of the blinded estimates

    A Bayesian time-to-event pharmacokinetic model for sequential phase I dose-escalation trials with multiple schedules

    Full text link
    Phase I dose-escalation trials constitute the first step in investigating the safety of potentially promising drugs in humans. Conventional methods for phase I dose-escalation trials are based on a single treatment schedule only. More recently, however, multiple schedules are more frequently investigated in the same trial. Here, we consider sequential phase I trials, where the trial proceeds with a new schedule (e.g. daily or weekly dosing) once the dose escalation with another schedule has been completed. The aim is to utilize the information from both the completed and the ongoing dose-escalation trial to inform decisions on the dose level for the next dose cohort. For this purpose, we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally developed for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple schedules using a pharmacokinetics (PK) model. In a simulation study, the developed appraoch is compared to the bridging continual reassessment method and the Bayesian logistic regression model using a meta-analytic-prior. TITE-PK results in better performance than comparators in terms of recommending acceptable dose and avoiding overly toxic doses for sequential phase I trials in most of the scenarios considered. Furthermore, better performance of TITE-PK is achieved while requiring similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK displays similar performance with alternatives in terms of acceptable dose recommendations. The \texttt{R} and \texttt{Stan} code for the implementation of an illustrative sequential phase I trial example is publicly available at https://github.com/gunhanb/TITEPK_sequential
    • …
    corecore