637 research outputs found

    Twisted-mass QCD, O(a) improvement and Wilson chiral perturbation theory

    Full text link
    We point out a caveat in the proof for automatic O(a) improvement in twisted mass lattice QCD at maximal twist angle. With the definition for the twist angle previously given by Frezzotti and Rossi, automatic O(a) improvement can fail unless the quark mass satisfies m_q >> a^2 Lambda_QCD^3. We propose a different definition for the twist angle which does not require a restriction on the quark mass for automatic O(a) improvement. In order to illustrate explicitly automatic O(a) improvement we compute the pion mass in the corresponding chiral effective theory. We consider different definitions for maximal twist and show explicitly the absence or presence of the leading O(a) effect, depending on the size of the quark mass.Comment: 27 pages, no figure

    Twisted mass QCD for the pion electromagnetic form factor

    Full text link
    The pion form factor is computed using quenched twisted mass QCD and the GMRES-DR matrix inverter. The momentum averaging procedure of Frezzotti and Rossi is used to remove leading lattice spacing artifacts, and numerical results for the form factor show the expected improvement with respect to the standard Wilson action. Although some matrix inverters are known to fail when applied to twisted mass QCD, GMRES-DR is found to be a viable and powerful option. Results obtained for the pion form factor are consistent with the published results from other O(a) improved actions and are also consistent with the available experimental data.Comment: 19 pages, 12 figure

    Quenched twisted mass QCD at small quark masses and in large volume

    Get PDF
    As a test of quenched lattice twisted mass QCD, we compute the non-perturbatively O(aa) improved pseudoscalar and vector meson masses and the pseudoscalar decay constant down to MPS/MV=0.467(13)M_{\rm PS}/M_{\rm V} = 0.467(13) at β=6\beta=6 in large volume. We check the absence of exceptional configurations and -- by further data at β=6.2\beta=6.2 -- the size of scaling violations. The CPU time cost for reaching a given accuracy is close to that with ordinary Wilson quarks at MPS/MV0.6M_{\rm PS}/M_{\rm V} \simeq 0.6 and grows smoothly as MPS/MVM_{\rm PS}/M_{\rm V} decreases.Comment: 4 pages, 3 figures, to appear in Nucl. Phys. B (Proc. Suppl.

    Chiral perturbation theory for partially quenched twisted mass lattice QCD

    Full text link
    Partially quenched Quantum Chromodynamics with Wilson fermions on a lattice is considered in the framework of chiral perturbation theory. Two degenerate quark flavours are associated with a chirally twisted mass term. The pion masses and decay constants are calculated in next-to-leading order including terms linear in the lattice spacing aa.Comment: 7 pages, LaTeX2e, final published versio

    Nucleon and Delta masses in twisted mass chiral perturbation theory

    Full text link
    We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing and the quark masses to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking.Comment: 21 pages, 4 figures, version published in PR

    The PHMC algorithm for simulations of dynamical fermions: II - Performance analysis

    Get PDF
    We compare the performance of the PHMC algorithm with the one of the HMC algorithm in practical simulations of lattice QCD. We show that the PHMC algorithm can lead to an acceleration of numerical simulations. It is demonstrated that the PHMC algorithm generates configurations carrying small isolated eigenvalues of the lattice Dirac operator and hence leads to a sampling of configuration space that is different from that of the HMC algorithm.Comment: Latex2e file, 6 figures, 31 page

    Chirally improving Wilson fermions II. Four-quark operators

    Get PDF
    In this paper we discuss how the peculiar properties of twisted lattice QCD at maximal twist can be employed to set up a consistent computational scheme in which, despite the explicit breaking of chiral symmetry induced by the presence of the Wilson and mass terms in the action, it is possible to completely bypass the problem of wrong chirality and parity mixings in the computation of the CP-conserving matrix elements of the ΔS=1,2\Delta S=1,2 effective weak Hamiltonian and at the same time have a positive determinant for non-degenerate quarks as well as full O(aa) improvement in on-shell quantities with no need of improving the lattice action and the operators.Comment: Replaced with published version in JHEP style: 43 pages, no figures. Added few references and discussion on "critical mass and O(a) improvement" as well as on "tests and numerical issues" in the Conclusions (sect. 6

    Twisted mass lattice QCD with non-degenerate quark masses

    Full text link
    Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a.Comment: 9 pages, LaTeX2e, reference adde
    corecore