12,269 research outputs found
Ultrasonic Doppler measurement of renal artery blood flow
An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported
Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems
The operations drip and mate considered in (mem)brane computing resemble the
operations cut and recombination well known from DNA computing. We here
consider sets of vesicles with multisets of objects on their outside membrane
interacting by drip and mate in two different setups: in test tube systems, the
vesicles may pass from one tube to another one provided they fulfill specific
constraints; in tissue-like P systems, the vesicles are immediately passed to
specified cells after having undergone a drip or mate operation. In both
variants, computational completeness can be obtained, yet with different
constraints for the drip and mate operations
Ultrasonic Doppler measurement of renal artery blood flow
Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra
Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler
An analysis of single-electron orbits in combined coaxial wiggler and axial
guide magnetic fields is presented. Solutions of the equations of motion are
developed in a form convenient for computing orbital velocity components and
trajectories in the radially dependent wiggler. Simple analytical solutions are
obtained in the radially-uniform-wiggler approximation and a formula for the
derivative of the axial velocity with respect to Lorentz factor
is derived. Results of numerical computations are presented and the
characteristics of the equilibrium orbits are discussed. The third spatial
harmonic of the coaxial wiggler field gives rise to group orbits which
are characterized by a strong negative mass regime.Comment: 13 pages, 9 figures, to appear in phys. rev.
Community rotorcraft air transportation benefits and opportunities
Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings
Frictional sliding without geometrical reflection symmetry
The dynamics of frictional interfaces play an important role in many physical
systems spanning a broad range of scales. It is well-known that frictional
interfaces separating two dissimilar materials couple interfacial slip and
normal stress variations, a coupling that has major implications on their
stability, failure mechanism and rupture directionality. In contrast,
interfaces separating identical materials are traditionally assumed not to
feature such a coupling due to symmetry considerations. We show, combining
theory and experiments, that interfaces which separate bodies made of
macroscopically identical materials, but lack geometrical reflection symmetry,
generically feature such a coupling. We discuss two applications of this novel
feature. First, we show that it accounts for a distinct, and previously
unexplained, experimentally observed weakening effect in frictional cracks.
Second, we demonstrate that it can destabilize frictional sliding which is
otherwise stable. The emerging framework is expected to find applications in a
broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the
title, extended analysis in the second par
Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem
In this paper, we study linear programming based approaches to the maximum
matching problem in the semi-streaming model. The semi-streaming model has
gained attention as a model for processing massive graphs as the importance of
such graphs has increased. This is a model where edges are streamed-in in an
adversarial order and we are allowed a space proportional to the number of
vertices in a graph.
In recent years, there has been several new results in this semi-streaming
model. However broad techniques such as linear programming have not been
adapted to this model. We present several techniques to adapt and optimize
linear programming based approaches in the semi-streaming model with an
application to the maximum matching problem. As a consequence, we improve
(almost) all previous results on this problem, and also prove new results on
interesting variants
Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity
We study two closely related, nonlinear models of a viscoplastic solid. These
models capture essential features of plasticity over a wide range of strain
rates and applied stresses. They exhibit inelastic strain relaxation and steady
flow above a well defined yield stress. In this paper, we describe a first step
in exploring the implications of these models for theories of fracture and
related phenomena. We consider a one dimensional problem of decohesion from a
substrate of a membrane that obeys the viscoplastic constitutive equations that
we have constructed. We find that, quite generally, when the yield stress
becomes smaller than some threshold value, the energy required for steady
decohesion becomes a non-monotonic function of the decohesion speed. As a
consequence, steady state decohesion at certain speeds becomes unstable. We
believe that these results are relevant to understanding the ductile to brittle
transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure
Are There Oscillations in the Baryon/Meson Ratio?
All available data indicate a surplus of baryon states over meson states for
energies greater than about 1.5 GeV. Since hadron-scale string theory suggests
that their numbers should become equal with increasing energy, it has recently
been proposed that there must exist exotic mesons with masses just above 1.7
GeV in order to fill the deficit. We demonstrate that a string-like picture is
actually consistent with the present numbers of baryon and meson states, and in
fact predicts regular oscillations in their ratio. This suggests a different
role for new hadronic states.Comment: 14 pages (RevTeX), McGill/92-0
Screening of charged singularities of random fields
Many types of point singularity have a topological index, or 'charge',
associated with them. For example the phase of a complex field depending on two
variables can either increase or decrease on making a clockwise circuit around
a simple zero, enabling the zeros to be assigned charges of plus or minus one.
In random fields we can define a correlation function for the charge-weighted
density of singularities. In many types of random fields, this correlation
function satisfies an identity which shows that the singularities 'screen' each
other perfectly: a positive singularity is surrounded by an excess of
concentration of negatives which exactly cancel its charge, and vice-versa.
This paper gives a simple and widely applicable derivation of this result. A
counterexample where screening is incomplete is also exhibited.Comment: 12 pages, no figures. Minor revision of manuscript submitted to J.
Phys. A, August 200
- …
