239 research outputs found
Yang-Mills Magneto-Fluid Unification
We generalize the hybrid magneto-fluid model of a charged fluid interacting
with an electromagnetic field to the dynamics of a relativistic hot fluid
interacting with a non-Abelian field. The fluid itself is endowed with a
non-Abelian charge and the consequences of this generalization are worked out.
Applications of this formalism to the Quark Gluon Plasma are suggested.Comment: 6 pages, RevTex
Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas
It is shown that rapid substantial changes in heating rate can induce
transitions to improved energy confinement regimes in zero-dimensional models
for tokamak plasma phenomenology. We examine for the first time the effect of
step changes in heating rate in the models of E-J.Kim and P.H.Diamond,
Phys.Rev.Lett. 90, 185006 (2003) and M.A.Malkov and P.H.Diamond, Phys.Plasmas
16, 012504 (2009) which nonlinearly couple the evolving temperature gradient,
micro-turbulence and a mesoscale flow; and in the extension of H.Zhu,
S.C.Chapman and R.O.Dendy, Phys.Plasmas 20, 042302 (2013), which couples to a
second mesoscale flow component. The temperature gradient rises, as does the
confinement time defined by analogy with the fusion context, while
micro-turbulence is suppressed. This outcome is robust against variation of
heating rise time and against introduction of an additional variable into the
model. It is also demonstrated that oscillating changes in heating rate can
drive the level of micro-turbulence through a period-doubling path to chaos,
where the amplitude of the oscillatory component of the heating rate is the
control parameter.Comment: 8 pages, 14 figure
Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation
The magnetohydrodynamic kink instability is observed and identified
experimentally as a poloidal flux amplification mechanism for coaxial gun
spheromak formation. Plasmas in this experiment fall into three distinct
regimes which depend on the peak gun current to magnetic flux ratio, with (I)
low values resulting in a straight plasma column with helical magnetic field,
(II) intermediate values leading to kinking of the column axis, and (III) high
values leading immediately to a detached plasma. Onset of column kinking agrees
quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo
which converts toroidal to poloidal flux. Regime II clearly leads to both
poloidal flux amplification and the development of a spheromak configuration.Comment: accepted for publication in Physical Review Letter
Shafranov's virial theorem and magnetic plasma confinement
Shafranov's virial theorem implies that nontrivial magnetohydrodynamical
equilibrium configurations must be supported by externally supplied currents.
Here we extend the virial theorem to field theory, where it relates to
Derrick's scaling argument on soliton stability. We then employ virial
arguments to investigate a realistic field theory model of a two-component
plasma, and conclude that stable localized solitons can exist in the bulk of a
finite density plasma. These solitons entail a nontrivial electric field which
implies that purely magnetohydrodynamical arguments are insufficient for
describing stable, nontrivial structures within the bulk of a plasma.Comment: 9 pages no figure
On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics
We prove the convergence of the solutions for the incompressible homogeneous magnetohydrodynamics (MHD) system to the solutions to ideal MHD one in the inviscid and non-resistive limit, detailing the explicit convergence rates. For this study we consider a fluid occupying the whole space R3 and we assume that the viscosity effects in this fluid can be described by two different operators: the usual Laplacian operator affected by the inverse of the Reynolds number or by a viscosity operator introduced by S. I. Braginskii in 1965
Magnetic Geometry and the Confinement of Electrically Conducting Plasmas
We develop an effective field theory approach to inspect the electromagnetic
interactions in an electrically neutral plasma, with an equal number of
negative and positive charge carriers. We argue that the static equilibrium
configurations within the plasma are topologically stable solitons, that
describe knotted and linked fluxtubes of helical magnetic fields.Comment: 9 pages 1 ps-figur
- …